Obsah

Slovo šéfredaktora, M. Zejda 1
Proměnné hvězdy typu Mira Ceti, P. Hálek 3
Symbiotické proměnné hvězdy, P. Sobotka 7
Refléktor 400 mm ... 16
 hvězdárny a planetária v Brně, J. Šafář 16
Interview s prof. Samusem 21
Naše WWW stránka, L. Bráň 25
Cirkuláře MEDÚZY, L. Bráň, P. Sobotka 27
3. setkání členů MEDÚZY, L. Bráň, P. Sobotka 29
Štyridsiaty Bezovec, K. Petrik 31
XIV. sjezd ČAS, M. Major 32
14. sjezd ČAS -
 co přinesl sekcí B.R.N.O. J. Šilhán 35

Perseus Pátrá, radi, informuje

Výzva pro mladé astronomy 36
Akce v roce 1998 ... 37
Sloučení stelární sekcí ČAS s B.R.N.O. 38
Novi členové ... 38
Opravy k seznamu členů: 39
Sty člen sekce .. 39
Dárci ... 39
Výročí našich členů .. 40
Článek L. Bráťa převzet
 do časopisu St. und Weltraum 40
Došlá pozorování ... 41

Contens

Editorial Note, M. Zejda 1
Mira Type Variable Stars, P. Hálek 3
Symbiotic Variable Stars, P. Sobotka 7
Refléktor 400 mm in Brno, J. Šafář 16
Our WWW homepage, L. Bráň 25
Contents of Jelly – Fish Cirkulars No 1 – 6 27
The third meeting of members of the Jelly-Fish
 group in Vyskov, L. Bráň, P. Sobotka 29
40 Years of Astronomy
 on the Mountain of Bezovec, K. Petrik 31
The 14-th Convention of the CAS, M. Major 32
The 14-th CAS Convention
 and its Results for B.R.N.O. J. Šilhán 34

Miscellanea

Appeal to Young Astronomers 36
Terms of 1998 Events 37
Uniting of the Stellarsection with the B.R.N.O. 38
New Members ... 38
Correction of the List Our Members 39
100 Members of B.R.N.O. 39
Donors ... 39
Anniversaries .. 40
Bráť’s Article on Vixen Telescope Taken
 over by the Sterne und Weltraum 40
New Observations .. 41

Uzávěrka příštího čísla je 30. 9. 1998
Slovo šéfredaktora

Nezměnila se však jen podoba nadpisů či umístění obsahů. Přibyla nám jedna „rubrika“, v níž by naši členové měli psát o svých pozorovacích stanovištích a metodách používaných při pozorování. První takový příspěvek naleznete již v tomto čísle. Rádi bychom osvěžili text větším množstvím obrazového materiálu. Jsme samozřejmě omezeni kvalitou tisku, ale i při té současné, která je compromisem našich požadavků a ceny, se budeme snažit v tomto směru o zlepšení. Změna nastává i u samotných příspěvků. Veškeré drobné zprávy, sdělení, či krátké příspěvky budou členové redakční rady pouze signovat. Plná jména autorů se objeví u delších (např. přehledových) článků členů redakční rady nebo u příspěvků ostatních autorů případně s krátkým představením o koho se jedná. Pro tyto příspěvatele zvenčí to do jisté míry bude znamenat zmenšení anonymity, ale také viditelnější odpovědnost za úroveň příspěvku. Redakce neručí za obsahovou správnost příspěvků a není v omezené míře ovlivňuje jejich jazykovou úroveň. Snažíme se samozřejmě odstranit evidentní chyby a případně (po dohodě s autorem) upravit stylizaci tak, aby čeština resp. slovenšina měla jistou standardní úroveň.

Rukopisy dosud dodávané k otištění v Perseu mají různé nedostatky, které omezují kvalitu článků a zpomalují práci redakčního kolektivu. Přitom jde mnohdy o drobnosti, jejichž náprava by autory jen mělo zaměstnala. Žádáme proto všechny autory, aby při psaní svých příspěvků zohlednili následující pravidla; podotýkáme, že jde o běžná pravidla vyžadovaná od autorů i v redakčních jiných časopisů, a jejich splnění bude pro nás nutnou podmínkou k tomu, aby příspěvek mohl být publikován ať již v klasickém („papírovém“) nebo elektronickém Perseu (viz příspěvek na straně 25).

1. Do Perseu se přijímají příspěvky v češtině a ve slovenštině a tisknou se v jazyce originálu. Anglické texty se podle okolností tisknou v originále ne-
bo v českém překladu. Po předchozí dohodě je možno zaslat příspěvek i v jiné řeči s tím, že redakce zabezpečí překlad do češtiny.

2. Ke každému příspěvku je nutno v příslušném jazyce sestavit abstrakt. To se dělá mnohem snáze autorovi než komukoli jinému.

3. Abstrakt je nutno přeložit do angličtiny. To redakce zabezpečí, ale pokud autor dodá překlad vlastní, být nepříliš kvalitní, ušetří nám tím čas. Překlad sice vždy prochází jazykovou revizí, ta však zabere méně času než kdyby bylo nutno vypracovat nový text od začátku.

4. Citovaná literatura by měla být sepsána do zvláštního seznamu na konci článku abecedně podle jména prvního autora a letopočet vydání musí být hned za jménem autora (autorů).

5. Je nutno používat spisovnou podobu češtiny (slovenštiny), a to nejen z estetických důvodů, ale i s ohledem na naše čtenáře v cizině. Pro člověka, jehož mateřštinou je jiný jazyk (nás časopis několik takových čtenářů má), by mohly být slangové výrazy a jiné odchylky od normy velkou komplikaci, protože je nenajde ve slovníku. Vzpomíneji jen na problémy, jaké máme my s porozuměním angličtině nebo němčině, když mluví jen maloučko odbočí z přehledné cestičky spisovného jazyka.

6. Chcete-li svůj článek doplnit obrázkem nebo fotografii, je to vitální. Můžete jej dodat v podobě tištěné předlohy pro naskenování nebo v elektronické podobě v některém z běžných obrazových formátů (např. jpg, pcx, tif, ...).

8. Nevýžádané rukopisy se nevracejí. Autorům se vrací pouze obrazové části rukopisů, a to jen po předchozí úmluvě.

Jsme u konce našeho úvodního povídání. Sluší tedy říci, kdo jej a vlastně celého Persea připravil. Redakční rada, jistě. Ale i v jejím složení došlo ke změnám. Přibrali jsme dva kolegy, kteří se stejně na přípravě Persea podíleli. V současné době tedy pracuje redakční rada ve složení:
šéfredaktor: [mz] RNDr. Miloslav Zejda (zejda@sci.muni.cz) – předseda sekce,
členové: [bra] Luboš Brát (brat@physics.muni.cz) – prezentace sekce na internetu,
[ph] RNDr. Petr Hájek (qhajek@fee.vutbr.cz) – vedoucí skupiny Medúza,
[šaf] Ing. Ján Šafář (safar@post.cz) – autor grafické podoby Persea, provádí sazbu,

Samozřejmě je k dispozici i běžná poštovní adresa redakce: Redakce Persea, Hvězdárna a planetárium M. Kopernika, Kraví hora 2, 616 00 Brno, CZ

Šéfredaktor

Proměnné hvězdy typu Mira Ceti

Mira Type Variable Stars

První periodicky proměnná hvězda objevená v novodobé historii – Mira Ceti – zůstává středem zájmu astronomů profesionálů i amatérů po několik staletí. V příspěvku je stručně popsána historie jejího výzkumu a zachycen dnešní stav našich astrofyzikálních znalostí nejen u Miry samotné, ale i u ostatních mirid.

The first known periodic variable star in modern epoch – Mira Ceti – has stayed in the centre of interest of amateur and professional astronomers for several centuries. A short description of history of its research is given and the level of our astrophysical knowledge is shown not only for Mira but also for the other Mira type stars as wellled.

Pohled do minulosti

Jenou zrání, dle historických záznamů to bylo 3. srpna 1596, se David Fabricius (1564-1617) zabýval pozorováním planety Merkur v době její viditelnosti na ranní obloze. Měřil vzdálenost této planety od hvězdy třetí velikosti v souhvězdí Velryby. Po provedení měření si uvědomil, že tuto hvězdu dříve v souhvězdí Velryby neviděl. Hledal ji i ve hvězdných mapách, které v té době měl k dispozici, ale ani tam ji nenashel. Jelikož Fabricius byl dobrý pozorovatel, začal tuto hvězdu sledovat a porovná-
vat její jasnost s ostatními hvězdami. Zaznamenal si, že hvězda se koncem srpna zjasnila na hvězdu druhé hvězdné velikosti. Ve svém úsilí pokračoval a zjistil, že se v průběhu měsíce září 1596 začala tato hvězda zeslabovat a uprostřed října mu zmizela z očí. Fabricius se domníval, že pozoroval novou hvězdu. Znovu tuto hvězdu spatřil 15. února 1609, ale nevěnoval ji další pozornost. Dnes je známo, že v roce 1603 tuto hvězdu pozoroval Johann Bayer, a že ji ve svém hvězdném atlase označil jako omikron Ceti. Bayerův atlas vyšel v roce 1603 a je podivné, že Fabricius při svém pozorování v roce 1609 neztootožnil svoji "novou" hvězdu z roku 1596 s Bayerovou hvězdou omikron Ceti.

Omkron Ceti proměnnou hvězdou

Následovnice o Ceti

Velkou úlohu pro rozvoj studia o hvězdě Mira Ceti sehrála Harvardská observatoř v USA. Její dlouholetý ředitel Pickering v roce 1881 provedl pozorování spektra dvou hvězd typu Mira Ceti a na konci roku 1885 pořídil první fotografické spektrum samotné Miry. Spektrum hvězdy Mira Ceti se odlišovalo od spekter jiných "běžných" hvězd. Když bylo 16. prosince 1885 pořízeno spektrum domnělé nové hvězdy v souhvězdí Orion a bylo porovnáno se spektem Miry, zjistilo se, že obě spektra jsou nápadně podobná a tudíž hvězda v Orionu není skutečnou novou, ale proměnnou hvězdou typu Mira Ceti. Toto dovolilo Pickeringovi vyslovit předpoklad o tom, že hvězdy se spektry podobnými spektru Mira Ceti jsou proměnnými hvězdami.

V roce 1949, když Kukarkin provedl klasifikaci proměnných hvězd, byly hvězdy typu Mira Ceti zařazeny do skupiny dlouhoobdobických hvězd. Tyto hvězdy mají periody od 100 do 1000 dní. Není nezajímavou skutečností, že do začátku 18. století bylo známo 11 proměnných hvězd a z tohoto počtu byly čtyři hvězdy typu Mira Ceti. Kromě prototypu těchto hvězd se jednalo o hvězdy χ Cygni, kterou objevil v roce 1686 Kirch; R Hydræ, kterou objevil v roce 1704 Maraldi; R Leonis, kterou objevil v roce 1782 Koch. Do roku 1997 bylo objeveno 6160 hvězdy typu Mira Ceti.

Obr. 1 Světelná křivka T UMi vytvořená z pozorování AFOEV.

Astrofyzikální pohled

Skupina proměnných hvězd typu Mira Ceti je tvořena velmi chladnými rudými obry s teplotou kolem 3000 K. Tyto hvězdy, mají 200 - 300 krát větší
poloměr než Slunce a jejich svitivost je 3000 - 4000 krát větší než u našeho Slunce. Jsou to pulzující dlouhoperiodické proměnné hvězdy s periodou v rozmezí od 150 do 1000 dní. Amplituda světelných změn je ve vizuálním oboru větší než 2,5 mag a v infračerveném větší než 1 mag. Příčinou změny jasnosti u těchto hvězd je radiální pulzace. Podle spektř se hvězdy Mira Ceti rozdělují na tři skupiny M, S a C podle poměrného zastoupení uhličí a kyslíku. Do skupiny M zařadíme hvězdy, kde ve spektřech je poměr C/O < 1; typ S jsou hvězdy kde C/C = 1 a typ C jsou hvězdy, kde C/O > 1.

V programu AAVSO, který čítá kolem 4000 proměnných hvězd, je asi 1361 hvězdy typu Mira Ceti. Nejvíce (809) patří podle spektřa do skupiny M. I v programu projektu Medúza je tento typ fyzických proměnných hvězd zastoupen, a to hvězdami TU And a Y Per. Další hvězdy budou v nejbližší době do programu doplněny. Na pozorování tohoto typu hvězd se ve skupině Medúza "specializuje" Ladislav Šmelcer z hvězdáře ve Valašském Meziříčí.

Literatura:
Hoffmeister C., Richter G., Wenzel W.: 1984, Veränderliche Sterne, 64

RNDr. Petr Hálek (*1957) je již dlouhá léta vedoucím vyškovské hvězdárny (odloučeného pracoviště Hvězdárny a planetária Mikuláše Koperníka v Brně). Je místopředsedou naši sekce a vedoucím skupiny Medúza.
Symbiotic Variable Stars

Článek je přehledem o tom, co jsou to symbioticcké hvězdy, do jakých skupin se dělí, jaká je historie jejich pozorování, čím jsou astrofyzikálně zajímavé a proč je dobré je pozorovat.

An article about the symbiotic stars, their subdivision to major classes, the history of their observation. An information about why they are interesting for the atrophysicists and how amateur astronomers can help in their research.

1) Historie

Existence symbioticckých hvězd byla poprvé zjištěna Williaminou P. Flemingovou, která zahmula R Aqr a RW Hya do svého seznamu hvězd s podivným spektrem a Annie Cannonovou, která izolovala skupinu červených hvězd s jasnými HI a Hell emisními čarami (Z And, CI Cyg, SY Mus, AG Peg) během své práce na HD katalogu na přelomu 19. a 20. století.

Těchto objevů si však nikdo nepovšiml, a tak byly symbioticcké hvězdy "objeveny" znovu Merrilllem a Humasonem (1932). Ti zařadili CI Cyg, RW Hya a AX Per mezi pekuliární (podivné) hvězdy spektrální třídy M se silnými emisními čarami Hell.

Současná přítomnost absorpcních a emisních čar ve spektru jednoho hvězdného objektu byla opravdu záhadná. Nalezeny byly na jedné straně absorpcní čary (TiO pásy, neutrální kovy) typické pro nízké teploty a na straně druhé emisní čary, které pro svůj vznik vyžadují vysoké teploty. To byl pro tehdejší astrofyziky opravdu oříšek.

Brzy poté prohlídka fotometrických archivů na Harvard College Observatory odhalila, že některé z těchto objektů, např. Z And, CI Cyg a AX Per jeví víceméně pravidelné světelné změny s periodami 600 až 900 dní a vedle toho příležitostně dvou až tří magnitudové erupce podobné novám.

Souběžné intenzivní spektroskopické studie ukazují, že vzplanutí jsou doprovázena dramatickými spektrálními změnami. Většina z vysoko vybuzených čar mizí, zatímco se vyvinou jasné H I a He II čary a emisně absorpcní čary typu P Cyg.

Pozorováním symbioticckých objektů se brzy vysvětlila ona dvojakost jejich spektrálních čar. Symbioticcké objekty jsou ve skutečnosti dvojhvězdami! V roce 1941 navrh P. Merrill na základě spektroskopických pozorování nazý-
vat Z And, CI Cyg, AX Per a podobné systémy "symbioticími hvězdami".

Na konci 60-tých let astronomové shromáždili nesmírné množství optických dat popisujících chování symbioticích hvězd; jejich fyzikální podstata však zůstává nejistou.

V osmdesátých letech se symbioticí hvězdy staly opět středem zájmu. Pokrok v technologii umožnil pozorovat v rozprátku elektromagnetického spektra od nízkofrekvenčního radiového až po tvrdé rentgenové záření a vyústil v podstatné zlepšení našeho chápání symbioticích hvězd.

2) Pozorování na více frekvencích
A. Optická data

Protože je to právě optická oblast, kde byly symbioticí hvězdy poprvé poznány a stále jsou klasifikovány, je vhodné začít s optickým spektrem typických objektů, abychom ukázali charakteristiky této třídy. Takové spektrum je na obr.1 a jeho základní charakteristiky jsou:

1) absorpční pásy (TiO, VO, Ca I a Na I) a spojité červené kontinuum pozorované u červených obrů.

2) Balmerův skok, silné emisní čáry neutrálních i ionizovaných prvků (H I, He I, He II, [O III], atd.) typické pro planetární mlhoviny, a modré kontinuum.

Velmi nízké amplitudy radiálních rychlostí (5 až 10 km s⁻¹) typické u dvoj-
hvězd obsahujících červeného obra, způsobují, že je velmi obtížné identifiko-
vat tyto hvězdy jako binární systémy. Moderní pozorování založená na sči-
tání detekovaných fotonů a křížové korelační analýze umožňují konstatovat,
že všechny jasné symbiotické systémy mají nízkou hmotnost (M_{celková} = 2 až 3
sluneční hmotnosti).

B. Infračervená data

Podle svých infračervených vlastností se symbiotické hvězdy dělí do dvou
hlavních tříd.
1) S - Stellar - hvězdné
2) D - Dust - prachové

80 procent systémů patří k typu S. Tento typ má ve fotosféře teplotu 3000 až
5000 K. Září tedy nejvíce v blízké infračervené oblasti.

Ostatní objekty patří k typu D a jejich záření v blízké infračervené oblasti
je tepelným zářením horkého prachu (T=1000 K). Monitorování v infračerve-
ném záření ukazuje, že typ D vykazuje periodické pulsace s amplitudou
1 mag a periodou 300 až 600 dní. V tom se podobají miridámm.

Z infračerveného kontinua řady hvězd typu D se ukázalo, že jejich slož-
kami je silně červená mirida (na 2 mikrometrech mají amplitudu 0,5 až 2 mag.)

Více než 50 procent známých symbiotických hvězd bylo pozorováno družicí IRAS. Její data na 12 až 16 \(\mu \text{m} \) byla použita pro studium úniku hmoty z chladné složky symbiotických hvězd. Tato data ukazují, že hvězdy typu D ztrácejí \(10^{-5} \) sluneční hmotnosti za rok. Tato ztráta je poněkud větší než u osamocených hvězd typu Mira. Také je patrné ze záření na 12 \(\mu \text{m} \) pozorovaného u většiny symbiotických hvězd typu S a D, že všeobecně vykazují více prachových emisí a větší ztrátu hmoty než osamocení červené obři.

Dělení symbiotických hvězd na typy S a D je pravděpodobně klíčem k souhrnnému porozumění fenoménu symbiotických hvězd. Mnoho pozorovaných charakteristik (např. radiové emise, chování ve vzplanutích) a fyzikálních parametrů (např. chladná složka, velikost a hustota mlhoviny, orbitální peridy: cca 500 až 1000 dní pro typ S a >15 let pro typ D) souvisí s příslušností k jednotlivým populacím. V současnosti je rozdíl patřících v tom, že typ D vznikne, když chladná hvězda má dost místa a může se vyvinout v miridu s podstatnou produkcí hvězdného větru a prachu.

C. Ultrafialová spektra

Vypuštění družice International Ultraviolet Explorer (IUE) bylo revolucí ve studiu symbiotických hvězd. IUE pořídila přímá spektra v ultrafialovém oboru. Bylo v nich velmi intenzivní modré kontinuum.

Několik symbiotických hvězd, např. CI Cyg, má poměrně ploché kontinua typická spíše pro hvězdy spektrálního typu A nebo B. Je zřejmé, že ani A ani B hvězda by neměla pozorované emisní spektrum. Tento patrný nesoulad ultrafialového kontinua a emisních čar ve spektru může být překonán, jestliže se taková kontinua vytvářejí v akrečním disku, jenž obklopuje méně hmotnou hvězdu.

Kenyon & Webbink (1984) demonstrovali, že ploché ultrafialová kontinua mohou vznikat v akrečním disku okolo méně hmotné hvězdy hlavní posloupnosti. Požadovaná míra aktivity akrečního disku asi \(10^{-5} \) hmotnosti Slunce za rok je dosti vysoká a chladný obr by měl vyplňovat nebo skoro vyplňovat svůj Rocheův lalok. U čtyřech systémů bylo prokázáno, že hvězda hlavní posloupnosti vysává hmotu ze svého souputniku. Jedná se o CI Cyg, YY Her, AR Pav a AX Per. Všechny tyto hvězdy náleží k typu S a tři z nich jsou zákrytovými dvojhvězdami s následujícími periodami: AR Pav - 605 d, AX Per - 682 d a CI Cyg - 855 d.
Emisní čáry vysoce ionizovaných prvků jako jsou He II, C III, C IV, Si III, Si IV, N V a v několika případech i O I a Fe II, které jsou zřetelně silné v ultrafialových spektrtech symbiotických hvězd, svědčí o přítomnosti rozlehlych ionizovaných mlhovin, jež jsou předpovízány z optických dat. Jejich radiální rychlosti mohou být vysoké: 500 až 1000 km s⁻¹ např. AG Peg, BF Cyg a CH Cyg nebo nízké: 100 km s⁻¹ např. CI Cyg a AX Per. Emisní čáry také bývají používány ke zjišťení fyzikálních podmínek v symbiotické mlhovině. Typické výsledky pro elektronovou teplotu \(T_e = (10 \, 000 \text{ až } 20 \, 000) \) K ukazují, že ionizace vzniká zářením, nikoli nárazem. Zjišťování elektronové hustoty ukazuje, že plyn je mnohem hustší (\(n_e = 10^6 \text{ až } 10^{10} \text{ cm}^{-3} \)) než v typické planetární mlhovině nebo v oblastech H II, kde je \(n < 10^4 \text{ cm}^{-3} \). Mlhoviny kolem hvězd typu D mívají nižší hustotu.

D. Radiové emise

Jestliže je ionizovaná mlhovina obklopující symbiotickou dvojihvězdu dosti rozlehlá, můžeme měřit radiové emise. Dosud byly radiové tepelné vlny detekovány na centimetrových vlhových délkách u 35 symbiotických hvězd. Radiové emise úzce souvisí s množstvím prachu ve hvězdné obalce. Typ D, jenž je více „zaprášen“, ukazuje výdatnější tok v radiovém i v infračerveném oboru. Svitivost v radiovém oboru rovněž souvisí se spektrálním typem čeroveného obra. Čím je spektraální typ pozdnější, tím více hvězda produkuje hmoty, a tím více září ve zminěných oborech. Je zřejmé, že D-typ má velmi rozsáhlé ionizované oblasti s poloměrem \(R = (100 \text{ až } 1 \, 000) \text{ AU} \).

Pro mnoho proměnných hvězd podobných miridám jsou charakteristické radiové maserové emise (SiO a OH). Dvě symbiotické miridy R Aqr a H1-36 byly rozpoznány jako zdroj SiO. U jiných symbiotických hvězd jsou však podmínky na horkém souputníku nepříznivé pro takové maserové emise.

Některé z intenzivnějších zdrojů (asi 10) ukazují asymetrickou strukturu na škále pod jednu úhlovou vteřinu. To znamená, že tyto objekty se nám nejeví jako pravidelné koule, ale jako zdeformované objekty. Tyto asymetrie mají dvě příčiny. Taylor v roce 1988 takové hvězdy rozdělil do dvou kategorií:

1) vyvrhovače (ejecta) - hvězdy, které vyvrhují hmotu
2) zdroje hvězdného větru

Mezi hvězdami „vyvrhovači“ je silná tendence k bipolaritě nebo výtryskům. Je zajímavé, že tyto objekty často jeví vysoké rychlosti odvozené z emisních čar v ultrafialovém záření \(\geq 500 \text{ km s}^{-1} \) např. CH Cyg, AG Peg, HM Sge. To mimo jiné znamená, že tyto systémy mohou produkovat horký hvězdný vítr.
E. Rentgenový obor

Nejnápadnější rentgenovou symbiotickou hvězdou je nepochybně GX1+4 (V 2116 Oph), která je neutronovou hvězdou, na níž padá hmota z hvězdného veřnu obra třídy M. Během 70-tých let byl GX1+4 jedním z nejjasnějších zdrojů tvrdého rentgenového záření. Jeho perioda patřila mezi největší, jaké u neutronových hvězd nalézáme.

Většina symbiotických hvězd (asi 70%) pozorovaných družicemi Einstein a EXOSAT nebyla detekována jako rentgenový zdroj. Lokální pohlcování rentgenového záření mlhovinou pravděpodobně zabraňuje tomu, abychom symbiotické hvězdy detekovali jako silný zdroj tohoto záření.

3. Fyzikální procesy, které vedou ke vzniku symbiotického fenoménu

Přehledka pozorování na více frekvencích v předešlé kapitole ukázala symbiotické hvězdy jako dlouhoperiodické interagující dvojhvězdné systémy. Musíme zdůraznit, že existuje množství typů interakcí, které mohou vyvolat děje, jež způsobí, že hvězdu zařadíme k typu symbiotických. Allen v roce 1988 navrhl následující třídění symbiotických hvězd podle fyzikálních dějů:

2) Na bílého trpaslíka padá hmota z větru obra spektrálního typu M (nebo miridy). Svitivost v ultrafialovém záření je obstarávána ústáleným (nebo skoro ústáleným) nukleárním hořením akrečního materiálu. Malé změny \(M_{\text{akreční}} \) mohou změnit horký ultrafialový zdroj na hvězdu podobnou nado-
bru A až F a vyvolávají optická vzplanutí. Takovým případem je pravděpodobně BF Cyg.

3) Bílý trpaslík, který přijímá hmotu z větru obra M nebo miridy, a tak soustředí vodík, který neshořel při vzplanutí obálky. Výsledkem je velmi pomalá nova, např. AG Peg, HM Sge nebo V 1016 Cyg.

4) Neutronová hvězda přijímá hmotu z hvězdného větru obra třídy M. Známe pouze jeden takový případ, a tím je GX1+4= V 2116 Oph.

Interakce mezi složkami symbiotických systémů může být dále komplikována například přítomností silných magnetických polí na bílém trpaslíku, jak je tomu v případě CH Cyg.

Je také možné, že se těsně vedle červeného obra tvoří planetární mlhovina. Z teorie pravděpodobnosti vyplývá, že k tomu dochází pouze u velmi malé části symbiotických hvězd.

4. Proč jsou symbiotické hvězdy astrofyzikálně zajímavé?

Je mnoho důvodů:

1) Jako všechny binární systémy, i ony poskytují informace o základních parametrech hvězd jako jsou hmotnost a rozměry, které jsou podstatné pro porozumění hvězdného vývoje.

2) Jejich interakce. Interakce mezi hvězdami v binárním systému jsou pro dnešní astrofyziku velmi zajímavé a symbiotický jev nám dává skvělou příležitost studovat tyto procesy za velmi extrémních podmínek, které v těchto systémech panují. Tak nám symbiotické hvězdy vyprávějí o základních fyzikálních procesech jako jsou: ztráta hmoty z červeného obra, akrece na kompaktní hvězdu (hlavní posloupnost, bílý trpaslík, neutronová hvězda); a vývoj novám podobným vzplanutím ve velmi rozsáhlém binárním systému a zářivé procesy v plynné mlhovině.

3) Symbiotické hvězdy patří mezi dvojihvězdy s nejdelšími známými periodami. Proto má každá složka dost času, aby se naplnil její vývojový osud před tím, než dojde k jejich vzájemné interakci. Symbiotické hvězdy jsou velmi důležité pro porozumění posledních etap hvězdného vývoje.
Obr. 2 Světelné změny CH Cyg. (a) Dlouhodobé změny hvězdné velikosti v oboru U. „eclipse“ – označuje okamžik zákrytu horké složky. (b) Světelná křivka obra spektrální třídy M v oboru V. (c) Zprůměrovaná data z obrázku (b); perioda pulsací obra. (d) Rychlé změny hvězdné velikosti v oboru U. (e) Zprůměrovaná data z obrázku (d).
5. Jak mohou amatéři pomoci?
Astronomové amatéři hrají velmi důležitou roli ve fotometrickém monitorování proměnných hvězd během celého století. Symbiotické hvězdy jsou zvláště významným terčem pro takový výzkum. Jsou neobyklé mezi proměnnými hvězdami, protože u nich dochází k několika druhům změn jasnosti v různých časových školách (viz obr.2).

Trpělivé monitorování světelných křivek může odhalit například:
- binární pohyb - patrný při zákrytech horké složky obrem např. CI Cyg nebo efektem odrazu např. AG Peg. Očekávané periody: P<1000 d (S-typ) a P= 10 až 100 let (D-typ)
- aktivitu nebo vzplanutí v nepravidelných intervalech, trvající od několika let do několika desítek let.
- pulsace nebo poloprávdivé variace chladného obra s typickou periodou P= (40 až 600) d.
- rychlé změny, flickering (třepotání), s typickou délka několika minut.
- cykly aktivity jako u Slunce - u pozdních obrů (možná AR Pav).
- zatemnění vyvolané prachem, který se zformoval na obalce pozdní složky nebo celého systému (např. R Aqr).

V současnosti je známo asi 140 symbiotických dvojíhvězd. Jen 21 systémů (15%) má známé orbitální periody a je naléhavě nutné určit je u dalších. Ačkoliv se obecně přijímá, že chladná složka u D-typu je hvězda typu mira, jen u 50% z nich známe periodu pulsace. Amatérští astronomové mohou při monitorování symbiotických hvězd významně pomoci.

6. Pozorování symbiotických hvězd ve skupině MEDÚZA
V našem pozorovacím programu je zařazeno 6 hvězd typu ZAND. Jde o tyto objekty: Z And, TX CVn, BF Cyg, CH Cyg, AG Dra a AX Per. Bude-li mít čtenář tohoto článku zájem o pozorování symbiotických proměnných hvězd, může se obrátit na autora.

Petr Sobotka (*1977) pochází z Kolína, ale v současné době jej nejvíce zastihnete na studích v Brně. Je jedním z nejaktivnějších pozorovatelů skupiny Medúza.
Reflektor 400 mm
hvězdárny a planetária v Brně

Ing. Jan Šafář

Reflector 400 mm in Brno

The following paragraphs have been addressed to those who would like to get to know something about the optical system, detectors and method of observation of variable stars at Brno Observatory.

Po prvních měřeních bylo jasné, že montáž dalekohledu potřebuje opravu a modernizaci. Nerovnoměrný chod hodinového stroje znemožňoval expozice delší než 30 s, což bylo pro hvězdy kolem 14,5 mag málo. Ani po optické stránce nebyl dalekohled v pořádku, a proto jsme v zimě 1996/97 přistoupili k celkové rekonstrukci. Stejnosměrné motory HSM a čidla na osách byly nahrazeny krokovými motory a řídícími jednotkami MICROCON. Hlavní zrcadlo získalo dokonalou plochu i povrch díky přebroušení a pokovení, které provedla firma ATC Přerov (pan Holubec). Tato firma též dodala rovně velké elliptické sekundární zrcátko s velkou osou 174 mm. Nyní celý systém pracuje v sestavě NEWTON Ø 400 mm, f 1 715 mm (přebroušením optické plochy došlo ke zkrácení ohrniska z původních 1750 mm na 1 715 mm). Poličko CCD kamery o velikosti 6,9 x 4,6 mm zobrazí 13°50˝ x 9°13˝ oblohy. Vidlicová montáž dalekohledu je bez aretaci – motory byly montovány bez rozpojitém spojek přes převodové přímo na osy. Pohyb lze provádět ručním ovladačem s možností volby čtyř rychlostí nebo z klávesnice počítače zadáním souřadnic α a δ. Maximální rychlost přejezdu dosahuje v rektascenzi 1,8°/s, v deklinaci 1,1°/s.

Příprava pozorování

První široký výběr minim, která by se dala dané noci pozorovat, obsahuje 10 až 20 hvězd. Z nich vyberu 3 až 4 jistá minima (hvězdy, u nichž vím, že minimum nastává v souladu s předpovědí) a doplním je pěti až osmi (podle délky noci) hvězdami již dlouho nebo vůbec nepozorovanými. Výběr mi zaručí nejméně 3 až 4 zachycená minima v jedné noci.

Pak si musím připravit mapky a identifikace. U hvězd již pozorovaných pouze sáhnu do archivu, pro nové hvězdy je potřeba mapky vytisknout. Protože montáž dalekohledu najíždí na souřadnice s přesností na oblokovou minutu, stačí jen jedna mapka s rozměry 30˚ x 40˚ s vyznačením obdélníku polička kamery 9˚ x 13˚. K výrobě mapek pro tento účel se osvědčil program GUIDE. Dosah snímků ze CCD je poněkud vyšší než katalog GUIDE (při 60 s expozici bez filtru a průměrné průzračnosti atmosféry lze měřit hvězdy jasně 16 mag), což někdy přináší nemilé komplikace. Podotýkám, že mapky publikované pro vizuální pozorování jsou k mému pozorování nevhodné.
Obr. 1 Těsné okolí V 379 Aur

Nyní přichází na řadu oříšek nejtvrdsí – identifikace proměnné hvězdy na mapce. GUIDE sice její polohu vyznačí podle souřadnic publikovaných v GCVS, ale jak ukazuje obr. 1 není tato identifikace stoprocentní. Dostává se ke slovu fotografický atlas Wehrenberg. Ani poté však nemusí být vyhráno. Skutečný snímek může vypadat dočista jinak – nejčastěji je na pozici proměnné hvězdy hvězd několik těsně vedle sebe. Pak nezbývá než doufat, že minimum nastává blízko kolem předpovězeného a snímkovat „naslepo“. Za proměnnou hvězdu pak označím tu, která po zpracování vykazovala změnu jasnosti (v lepším případě celé minimum).

Aby byla příprava na pozorování kompletní, musíme si vytvořit malý textový soubor, do kterého zapišíme souřadnice všech proměnných hvězd připravených k pozorování. Nyní už stačí jen dobře se najíst a napíšť, doufáme v bezoblačnou noc a nebyť z toho nervózní.

Obloha je bez mráčku, pomalu se stmívá, plactvo a jiná havěť uléhá do svých hnízd, nor a doupat – to je ten správný okamžik pro oživení pozorovacího stanoviště. Po odtažení posuvné střechy stačí zapnout PC, pohonu montáže, CCD kameru a spustit patřičné ovládací programy. Nesmím opomenout kontrolu vnitřního času počítače.

Popsaný systém pozorování umožňuje sledování mnoha minim proměnných hvězd za jedinou noc. Můj „rekord“ je 12 minim za jednu noc – dalo by se stihnout i více, ale protože některé hvězdy nevyjdou podle předpovědi, zachytím jen část světelné křivky – bez minima. Co však tento systém neumožňuje je odpočinek, chvíle klidu nastává pouze na dobu jedné minuty během expozice. Samozřejmě celá činnost se dá naprogramovat a člověk by si mohl lebedít v posteli. Jde ovšem o techniku (a to především o elektroniku),
která nefunguje stoprocentně, zásahy pozorovatele jsou přece jen během po-
zorování nutné, když například „spadne“ ovládání pojezdů dalekohledu.

Některý z následujících dní pak věnuji zpracování pořízených dat. K fotometrickému zpracování používám program MUNIPHOT, což je vysepa-
rovaná část balíku programů s názvem MIDAS, úpravu provedli F. Hroch
a R. Novák. Výhodou MUNIPHOTu je funkce v prostředí MS-DOS. MUNI-
PHOT fotometrický zpracuje najednou celou sérii snímků jedné proměnné
hvězdy. Část výsledu z tohoto programu ukazuje následující tabulka:

<table>
<thead>
<tr>
<th>JD</th>
<th>(\Delta m_1)</th>
<th>chyba</th>
<th>(\Delta m_2)</th>
<th>chyba</th>
<th>(\Delta m_3)</th>
<th>chyba</th>
</tr>
</thead>
<tbody>
<tr>
<td>50927.3003</td>
<td>1.332</td>
<td>.005</td>
<td>1.143</td>
<td>.004</td>
<td>.291</td>
<td>.003</td>
</tr>
<tr>
<td>50927.3068</td>
<td>1.340</td>
<td>.005</td>
<td>1.147</td>
<td>004</td>
<td>.310</td>
<td>.003</td>
</tr>
<tr>
<td>50927.3104</td>
<td>1.325</td>
<td>.005</td>
<td>1.127</td>
<td>004</td>
<td>.287</td>
<td>.003</td>
</tr>
<tr>
<td>50927.3223</td>
<td>1.304</td>
<td>.005</td>
<td>1.118</td>
<td>004</td>
<td>.282</td>
<td>.003</td>
</tr>
<tr>
<td>50927.3236</td>
<td>1.298</td>
<td>.005</td>
<td>1.107</td>
<td>004</td>
<td>.268</td>
<td>.003</td>
</tr>
<tr>
<td>50927.3309</td>
<td>1.297</td>
<td>.005</td>
<td>1.088</td>
<td>004</td>
<td>.256</td>
<td>.003</td>
</tr>
</tbody>
</table>

Sloupce \(\Delta m_1 \) až \(\Delta m_3 \) udávají rozdíl hvězdné velikosti proměnné hvězdy
vůči třem zvoleným srovnávacím hvězdám. Vykreslením grafu JD/\(\Delta m \) zí-
skáme světlou křivku proměňované hvězdy. Okamžik minima jasnosti ur-
čuji programy na zjišťování extrémů, které jsme získali od italského kolegy
dr. Gaspaniho (GEOS, GDS). Na obr. 3 vidíte dvě z miním pořízených výše
popsaným způsobem.

Obr. 3 Ukázky pozorování s popsaným systémem
FM Vul 12,8 - 13,7 mag (P), WX Dra 13,5 - 15,3 mag (B)
Takto tedy probíhá pozorování a následné zpracování zákrytových proměnných hvězd na hvězdárně v Brně. Pokud by se mezi Vámi snad našli zájemci o exkurzi a praktické ukázky, ozvete se: 05/41 32 12 87, případně e-mail na J. Šafáře: safar@post.cz, nebo na adresu redakce Perseua.

Ing. Jan Šafář (*1966) je technikem Hvězdárny a planetária M. Koperníka v Brně. Již několik let se stará o sazbu Perseua. V současné době je jedním z nejaktivnějších pozorovatelů naši sekce se CCD.

Interview s prof. Samusem

An Interview with Prof. Samus

Profesor Nikolaj N. Samus je předním světovým astronomem. Zastává místo vedoucího skupiny vydávající katalogy proměnných hvězd. Brno navštívil v posledním desetiletí dvakrát. Letos se zde zastavil počas své soukromé návštěvy České republiky. 26. ledna pronesl dosti navštívenou přednášku a druhý den mu vedoucí naší sekce položil několik otázek k nejzajímavějším bodům přednášky. Text rozhovoru bude v plném znění publikován i anglicky, a to v Elektronickém Perseu na adrese:

http://astro.sci.municz/variables

Professor Nikolai N. Samus is one of the most important worlds' astronomers. He has been the head of the editor team of the General Catalogue of Variable Stars. In recent years he visited Brno twice. This year he called there round in January. On January, 26 he held there a well visited lecture and the next day he was interviewed about the most interesting items by the president of our Variable Star Section. The full version of the interview will be also published in the electronic form of Perseus, the address:

http://astro.sci.municz/variables
Z: Nejprve bych se vás rád zeptal na vaše první kroky v astronomii. Byla to nějaká událost nebo osobnost, která vás přivedla k astronomii a speciálně k proměnným hvězdám?

S: Myšlenka na astronomii se u mne objevila už v raném dětství. Myslím, že mi bylo asi 7 let, když jsem řekl svým rodičům, kteří nemají nic společného s fyzikálními vědami ani astronomií, že se stanu astronoomem. Od té doby jsem tento úmysl neopustil. Pokud jde o proměnné hvězdy, to byla viceměně věc náhody. Když jsem prvním rokem studoval na moskevské univerzitě, dozvěděl jsem se od kteréhosi ze svých kolegů o existenci skupiny studentů, kteří studovali proměnné hvězdy pod vedením profesora Cholopova. Ten byl jejich konzultantem. Šel jsem tam. Profesor Cholopov tam osobně nebyl, skupinu vedl lektor Kovalenko - myslím, že se tak jmenoval. Právě jsme začali studovat proměnné hvězdy. Potom nám sám profesor Cholopov dal některé pokyny, co studovat. Když jsme byli uprostřed této práce, Goranskij a já, byli jsme nenadále předvoláni k profesorovi Cholopovovi, a ten nám řekl, že nás chce vidět šéf. Šéfem byl profesor Kukarkin, a ten prostě přetáhl dva studenty profesoru Cholopovovi. Tak jsme začali pracovat u profesora Kukarkina, převážně na kulových hvězdokupách, ale nepřestali jsme ani v práci zaměřené na proměnné hvězdy. A potom jsme po mnoho let přecházeli mezi kulovými hvězdokupami a proměnnými hvězdami a v současnosti děláme obojí, zabýváme se jak kulovými hvězdokupami tak proměnnými hvězdami.

Z.: Měl jste ve své astronomické práci nějakou osobnost jako vzor?

Z.: Jste vedoucím kolektivu, který připravuje Všeobecný katalog proměnných hvězd (GCVS). Mohl byste seznámit naše čtenáře s jeho účelem? Které
je poslední vydání? Je možné používat katalog po Internetu? Hovořil jste o tom včera na přednášce, ale mnozí čtenáři tam nebyli.

Z.: Můžete nám prozradit něco víc o vaší pracovní skupině kolem GCVS? Kolik lidí u vás pracuje? Jsou tito lidé specializováni na jednotlivé typy proměnných hvězd nebo na určité práce, např. upřesňování souřadnic, rešerše v publikacích?

S.: Na tuto otázku je obtížné stručně odpovědět. Myslím, že by detaily ani čtenáře příliš nezajímaly. Ve skutečnosti jsou 2 skupiny ve dvou moskev-

Z.: Předposlední otázka se týká pojmenovávání proměnných hvězd. Dnešní systém označení proměnných hvězd písmeny a číslý je velmi komplikovaný. Plánujete v něm nějaké revoluční změny?

Z.: Přibyly velké počty nových proměnných od týmu HIPPARCOS, z projektů jako MACHO, OGLE. Jak zpracováváte data o těchto nových proměnných hvězdách?

Z.: Děkuji za rozhovor.

Our WWW Homepage

Na domovské Internetovské stránce B.R.N.O. vznikla nová služba pro zájemce o proměnné hvězdy. Elektronický Perseus obsahuje zajímavé články o proměnných hvězdách, zprávy od pozorovatelů, novinky na poli proměnných hvězd. Čekáme na příspěvky i od vás...

A new service has been founded on our World Wide Web homepage. The Electronic Perseus bulletin contains interesting articles about variable stars, reports from observers, news from variable star world. We're a waiting your articles.

Mnoho z vás, čtenářů Persea, má přístup k celosvětové počítačové síti Internet. Snadným "kliknutím" myší si přes tuto informační superdálnici můžete objednat pizzu či nové auto, a nebo se podívat na aktuální fotografií oblacnosti nad Evropou. Téměř všechny organizace zabývající se (nejen) proměnnými hvězdami mají své domovské internetovské stránky. Na nich se uživatel sítě Internet může dozvědět téměř vše. Podmínky členství v B.R.N.O. (mluvme konkrétně o nás), jsou zde k dispozici předpovědi minim a seznamy mapek, katalog BRKA, můžete si zde prohlédnout fotografie z akcí B.R.N.O. (například loňské konference), odkazy na obdobné organizace v zahraničí, obsahy jednotlivých čísel Persea, atd. Vše, co jsem právě vyjmenoval ještě zdaleka nevyčerpává možnosti prezentace naši sekce na

Zbvává snad jen dodat, že články se nemusí týkat pouze proměnných hvězd, ale i oborů příbuzných, jako je např. stelární astronomie, PC software & proměnné hvězdy, atp. Rovněž nová rubrika v Perseovi - Napište nám o svém dalekohledu - může najít dobré uplatnění na WWW stránkách. Tak tedy "Pište, pište, pište."
Cirkuláře MEDŮZY

Luboš Brát, Petr Sobotka

Contens of Jelly – Fish Cirkulars No 1 – 6

Six issues of the Cirkular of the Jelly-Fish group since have been emitted already June, 6th 1997. All contents are available via http through the address "astro.sci.muni.cz/variables". The following index is arranged by subjects.

S

Články o proměnných hvězdách

Sledujte S Per v maximu
Nova Scorpii 1997
Rychlé změny diouhoperiodických proměnných hvězd
T UMi - změny perioody
Nova Scorpii po dvou měsících
Proměnná hvězda V2113 Oph čtvrt století od objevu
SYMBOL 97, "Symbol" 8 Orionis
Proměnná mlhovina a proměnná hvězda T Tau
Paralaxy hvězdu typu Mira
Fotometrie Mirid
Pulzace SYMBOL 111 "Symbol" 8 Ceti
S Per – výsledky pozorovací kampaně
Případ prudkého hvězdného vývoje
SYMBOL 104 "Symbol" 8 Carinae
Supernova 1998S v NGC 3877

L. Brát
L. Brát, P. Sobotka
L. Šmelcer
L. Šmelcer
L. Šmelcer
P. Sobotka
P. Hájek
L. Brát
L. Brát
L. Šmelcer
L. Šmelcer
L. Šmelcer
L. Brát
L. Brát
L. Brát
V. Němcová
P. Sobotka, L. Brát
Cirkulář č. 2
č. 2
č. 3
č. 3
č. 3
č. 3
č. 4
č. 5
č. 5
č. 5
č. 5
č. 5
č. 6
č. 6
č. 6

27
Seriál Proměnné hvězdy v našem programu

Jsou zajímavé hvězdy typu Z Cam?
Hvězdy typu SR
Hvězdy typu RCB
Kataklzymské proměnné hvězdy
Symbiotické proměnné hvězdy
Proměnné hvězdy typu Mira Celi

Zprávy od pozorovatelů

Možná proměnnost srovnávací hvězdy u SS Cyg
Srovnávací hvězda 108 u Z Aur
Rychlé změny TY And?
Srovnávací hvězda 108 u Z Aur
Srovnávací hvězda 99 u SS Cyg
Srovnávací hvězda 102 u TV And
Otázka kvantity

Stav databáze

Databáze MEDUZY (5 483 odhadu)
Databáze MEDUZY (6 049)
Databáze MEDUZY (8 747)
Zpráva o správě databáze (9 528)
Databáze (10 583)

Různé

ÚVOD
Soubor mapek MEDÚZA I
Druhý sraz členu MEDÚZY (pozvánka)
Členská základna
Soubor mapek MEDÚZA I (1997)
Soubor mapek MEDÚZA I (1997)
Druhý sraz členu MEDÚZY ve Vyškově (zápis)
WWW stránka MEDÚZY
Jste členy B.R N.O. ?
Třetí setkání členu MEDÚZY ve Vyškově (zápis)
Výzva (pište do naší WWW a do Cirkuláře ...)

Přílohy

mapky na SS Cyg a Z Aur
orientační plánek Vyškova
mapka na S & T Per
mapka na TY And
aktuální seznam členu MEDÚZY
mapka na SYMBOL 97 lí "Symbol" š 8 Ori
aktuální seznam členu MEDÚZY
mapka na T Tau
světelné křivky SN 1998S a AG Dra
aktuální seznam členu MEDÚZY
The third meeting of members of the Jelly-Fish group in Vyškov

Již potřetí se setkali členové MEDÚZY na hvězdárny ve Vyškově. Při této příležitosti byla předvedena nová WWW stránka skupiny, stav databáze, práce se CCD kamery, chytrý soubor mapok MEDÚZA 1 a dokonce se i pozorovalo...

The third meeting of members of the Jelly-Fish group was held at Vyškov Observatory on 28 III 1998. The participants could see the new WWW homepage of the group, the state of database, work with new CCD camera, prepared file of maps - MEDUZA 1, and were even able to do a few visual estimates...

Většina účastníků přijela již v pátek večer. Bohužel hustá oblacnost znešmála provádět to, co mají členové MEDÚZY nejraději, totiž pozorování proměnných hvězd.

Na hvězdárně probíhají v současné době stavební úpravy, aby lépe sloužila zájemcům o astronomii. Přesto bylo možné využít pohostinnost její přístřeší, která byla ještě umocněna tím, že stravování bylo tentokrát zajištěno přímo na hvězdárně díky Evě Knappové.

Samotné jednání začalo v souvislosti s předběžným programem v 9:30. Úvodního slova se ujal dr. Hájek a přivítal všechny účastníky.

Jako první bod byla na programu informace každého účastníka o jeho pozorovatelských i jiných astronomických aktivitách. Vesměs se jedná o vizuální pozorování, ale máme k dispozici i fotografická data. V současnosti se rovněž rozbíhá projekt monitorování hvězd v programu MEDÚZY pomocí CCD techniky na vyškovské hvězdárně.

Dalším bodem programu byla diskuse o Cirkuláři. Doposud bylo vydáno 5 čísel Cirkuláře. L. Šmelcer předal redakci své další příspěvky. Dr. Zejda navrhl zveřejňovat v sekčním věstníku Perseus přehled článků publikovaných v Cirkulářích (viz článek předcházející).

Po obědě Dr. Hájek za velkého zájmu představil katalogy TIC, GSC a USNO A 1.0.

Posledním bodem programu bylo předvedení práce s obslužným programem k CCD kameře ST-7. Dr. Hájek nastínil budoucnost využití této techniky k soustavnému sledování proměnných hvězd na vyškovské hvězdárně. Toto sledování bude probíhat zároveň s vizuálními pozorováním a výsledky budou konfrontovány. V rámci projektu MEDÚZA tak proběhne studie spolehlivosti vizuálního pozorování.

Kromě výše uvedených témat se někteří účastníci setkání věnovali doplňování svých odhadů do databáze. Po setmění se mohlo díky jasné obloze i pozorovat. P. Fědorová využila možnosti a předvedla přítomným svůj nový dalekohled.

Závěrem můžeme setkání zhodnotit jako velmi plodné. Doufejme, že na příštím srazu MEDÚZY se sejdeme v ještě hojnějším počtu.
40 Years of Astronomy on the Mountain of Bezovec

In 1958, the organizers of the Czechoslovak Meteor Expeditions held their first observing session on the mountain of Bezovec in the mountain chain of "Povážský Inovec", western Slovakia. They found there far better weather condition than they had had in their former observing sites in the rainy Beskyd Mountains. Since then, one or more astronomical meetings of various kinds have been organized there almost every year. In recent years, the annual spring Slovak national conference "Stellar Astronomy" has acquired the greatest importance among them. Because of the round anniversar-y, this year's course had an especially valuable programme and proceedings in Slovak and Czech languages will be issued from it.

Pražské obdobné každý z vás vie, kde sa v máji stretávajú česki a sloven- ski astronómovia - amatéri aj profesionáli.

Historický blok sa skladal z prednášok docenta Bochnička, pani Ferenge- vej a P. Hazuchu, ktorí hovorili o vývoji stelárnej astronomie, o slovenských vedcích F. X. Zachovi a M. K. Thégem, a o histórii seminárov na Bezovci. Teoretické a pozorovateľské aspekty rôznych typov hviezd zazněli v pred- náškach K. Maštenovej (rané štadiá vývoja hviezdy), Z. Urbana (kataklizmaticke hviezdy a T Pyxidis), L. Hrica (AG Draconis), K. Petriška (V Sagittae), J. Budaja (chemicky pekuliárne dvojiviezdy), L. Šmelcera (miridy), M. Navrátila (ES UMa), Z. Komárka (gravitačné mikrošošovky), a I. Kudzeja (efekty a interakcie v dvojiviezoch). Blok prístrojovej techniky
a pozorovateľských postupov bol vyplnený prednáškami D. Hanžla o CCD fotometrii v Brne, Z. Veliča o pozorovaní CCD kamerou a L. Lenžu o iridovom mikrotom tomu. O kozmologickej konštante nám rozprával docent Stuchlík. Tohtočný seminár bol obohatený aj o niekoľko zaujímavých výves- ných posterov, ktoré zahŕňali všetky spomenuté oblasti. Tohtočného seminára sa bohužiaľ nemohol zúčastniť pán profesor M. Vetešník, poslal nám však množstvo obrazového aj video materiálu z konferencie na Kanárskych ostrovoch.

Samozrejme, snáď najdôležitejšou súčasťou seminára boli kuloárne roz- hovory a dobrá nálada, ktorá medzi účastníkmi panovala. Dovi o rok!

Poznámka redakcie: Sborník v ceně kolem 150,- SK je možné objednať u Dr. Ladisla- va Hrince, Astronomický ústav SAV, Tatranská Lomnica 059 60, Slovensko

XIV. sjezd ČAS (Převzato z Corona Pragensis)

XIV. sjezd ČAS (Převzato z Corona Pragensis) Milan Major

The 14-th Convention of the Czech Astronomical Society

The 14-th Convention of the Czech Astronomical Society has been hosted by Nicholas Copernicus Observatory and Planetarium in Brno on April, 4-5, 1998. A new executive committee was elected and some corrections in the society statute were made. Executive committee has henceforward the right of co-opting a limited number of new members.

V sobotu večer položil Dr. Zdeněk Mikulášek účastníkům sjezdu čtyři základní otázky. Naštěstí je sám zároveň velmi poutavé zodpověděl.

Nejpodstatnější událostí sjezdu byla bezesporu volba nového výkoněho výboru. Tentokrát probíhala jinak než dosud. Nevolili se totiž jednotliví kandidáti, ale celé pracovní týmy. Tento způsob volby by měl zajistit, aby výkoný výbor nebyl jen souborem jednotlivců s různými představami o práci a s náhodnými vzájemnými vztahy, ale aby se jednalo o kolektiv, který má společně představy a vůli ke společné práci. V sobotu se představil jeden tým, přes noc a ráno se pak ustavil druhý tým. Tito lidé o práci ve výkoněm výboru přemýšleli již delší dobu, ale stále nebyli rozhodnuti kandidovat. Nakonec byl zvolen nový výkoný výbor v tomto složení:

- RNDr. Jiří Borovička ČSc - předseda
- Pavel Suchan - místopředseda
- Karel Haliř - hospodař a práce s pobočkami a sekcemi
- RNDr. Petr Hájek - Kosmické rozhledy plus
- RNDr. Miloslav Zejda - presentace ČAS navenek i uvnitř
Jakub Rozehnal - styk se společností Astropis, publikační činnost, částečně sekretariát

Jak z představování, tak i z kuloárových rozhovorů vyplynulo, že má nový zvolený výkonného výbor poměrně přesnou představu o své práci. Má již také přislibenu pomoc několika lidí na určité činnosti.

Jako revizoři byli na další období zvoleni: RNDr. Eva Marková, CSc., RN-Dr. Jiří Prudký a Zdeněk Tarant.

Nové zvolený předseda ČAS Dr. Jiří Borovička přednesl na závěr sjezdu dvě rezoluce. V první byla vyjádřena vůle po další spolupráci s Říši hvězd, druhá byla výzvou pro všechny amatérské astronomické společnosti k užší spolupráci s ČAS. Obě byly delegáty schváleny.

Na závěr bych chtěl poděkovat organizátorům 14. sjezdu ČAS a jmenovitě Dr. Petru Hájkovi za bezvadnou organizaci a příjemné prostředí, které všem delegátem připravili. Novému výkonnému výboru pak popřejme mnoho elanu, tvůrčích a organizačních sil, které by mohli věnovat ve prospěch celé ČAS.

Ing Milan Major (*1954) byl v minulých šesti letech členem výboru Pražské pobočky ČAS na sjezdu byl jako delegát PP ČAS už 20 let se zabývá pozorováním proměnných hvězd a nově je i členem naši sekce

14. sjezd ČAS - co přinesl sekci B.R.N.O. Jindřich Šilhán

The 14-th CAS Convention and Its Results for B.R.N.O. Section

A new executive committee was elected at the 14-th convention of the Czech Astronomical Society in April. The new president of the CAS Dr. J. Borovička and the most part of the committee members come from our section. The B.R.N.O. section has taken over a great deal of the responsibility for the whole CAS.

Fungující astronomická společnost s celostátní působností je potřebná v každém státě. Někdo musí hráti roli koordinátora, vstupovat do jednání se státními úřady, vystupovat jako partner zahraničních astronomických společností a institucí. U nás se pro tuto úlohu nejlepší hodí ČAS. Nejnověji je to patrné při přípravě konference JENAM. Aby však ČAS plnil své funkce, je zapotřebí spousty práce, a často práce málo atraktivní. Na příští tři roky se do ní uvázali naši kolegové.

A kde že v našem zamyšlení nad Českou astronomickou společností zůstalá astronomie? Z podstaty věcí vyplývá, že ve výkonného výboru ČAS, na sekretariátě a jejím sjezdu se řeší odborných otázek málo. Odborná práce je záležitostí poboček a sekcí. Ústředí ČAS jim v tom má napomáhat. To se zatím i přes některé výhrady děje. Sekce B.R.N.O. pořádá v tomtošeté sále, kde se konal sjezd, už po několik let vždy v listopadu konferenci o proměnných hvězdách. Ti, kdo se těchto akcí zúčastňují nebo se třeba jen objednají konference sborník, by neměli ztratit ze zřetele, že bez podpory ČAS by se tyto záležitostí daly realizovat jen s obtížemi, pokud vůbec. Další proměnářská konference se v Brně koná 6 - 8 listopadu 1998. Zveme Vás na ni už nyní. Budete se tam moci setkat s většinou členů výkonného výboru ČAS a přesvědčit se, že se i přes své nové povinnosti astronomii neodcizili.
Perseus pátrá, radí, informuje ...

Miscellanea

Výzva pro mladé astronomy

Podpora účasti na konferenci JENAM 98

Appeal to Young Astronomers
Supports for Attendees to the JENAM 98

RNDr. Jiří Borovička, CSc. předseda ČAS
Akce v roce 1998

Terms of 1998 Events

1. Plenární schůze B.R.N.O. - sekce pro pozorovatele proměnných hvězd
 Termín: 7. listopadu
 Místo konání: Hvězdárna a planetárium, Kraví hora, Brno

2. Letní soustředění mladých astronomů
 Termín: 1. 7. - 7. 7.
 Místo konání: hvězdárna Vyškov-Marchanice
 Kontaktní adresa: RNDr. Petr Hájek, P O BOX , Vyškov
 Tel: (420)+0507-21668, (420)+0603-527727, Fax: (420)+0507-22348
 E-mail: qhajek@fee.vutbr.cz

3. Praktikum pro pozorovatele proměnných hvězd
 Termín: 20. 7. - 1. 8.
 Místo konání: hvězdárna Vyškov-Marchanice, hvězdárna Ždánice
 Kontaktní adresa: (pro stanici Vyškov) viz bod 2.
 (pro stanici Ždánice): Jan Čechal, Svatobořice 125, 696 04 Svatobořice
 tel.: (420)+0629-620523, e-mail: cechal@fyzika.fme.vutbr.cz

4. Expedícia Variable '98
 Místo konání: Kolonica
 Organizátor: Vihorlatská hvezdářeň Humenné
 Kontaktní adresa: Igor Kudzej, Kukoreliho 4, Humenné 066 01

5. Pozorovací soustředění projektu Medúza
 Místo konání: hvězdárna Vyškov-Marchanice
 Kontaktní adresa: viz bod 2

6. Konference JENAM '98 (7. evropská a 65. národní astronomická konf.)
 Termín: 8. – 13. září
 Místo konání: Praha
 Informace a přihlášky: http://sunkl.asu.cas.cz/jenam98
 Kontaktní adresa: JENAM98, Astronomický ústav AV ČR, Boční II, 1401
 14131 Praha 4 – spořilov. Te.: 02-67103038, fax: 02-769023
 e-mail.: zuzana@ig.cas.cz

7. Konference GEOS, GDS
 Termín: pravděpodobně září
 Místo konání: St. Pellegrino, Itálie
 Kontaktní adresa: redakce Persea
8. 29. konference o výzkumu proměnných hvězd (v rámci konference se uskuteční plenární schůze sekce)
Termín: 6. - 8. listopadu
Místo konání: Hvězdárna a planetárium, Kraví hora, Brno
Kontaktní adresa: RNDr. Miloslav Zejda,
Hvězdárna a planetárium M. Koperníka, Kraví hora 2, 616 00 Brno, ČR
tel. a fax: (420)+05-41321287, (420)+05-791072
e-mail: qzejda@fee.vutbr.cz

9. Pozorovací víkendy
Místo konání: hvězdárna Vyškov-Marchanice
Kontaktní adresa: viz bod 2

Členské záležitosti sekce B.R.N.O.
Membership Affairs of the B.R.N.O. Group

Sloučení stelární sekce ČAS s B.R.N.O.

Uniting of the Stellar Section with the B.R.N.O.

Jednání související se spojením stelární sekce se sekcí pozorovatelů proměnných hvězd byla dovedena k závěru. Z 27 členů a členek dřívejší stelární sekce jedna členka k nám příslušela již dříve, a další 3 členové k nám přestoupili nyní po zániku stelární sekce.

Noví členové / New Members

RNDr. Petr Hadrava, CSc., Malostranské nám. 27, 118 00 Praha, had@sunstel.asu.cas.cz
ing. Milan Major, Krouzova 3048, Praha 4, Modřany, milan.major@softtronic.cz
Jiří Minář, Husova 18, 301 24 Plzeň, minar@gma.pilsedu.cz
Vlastimil Mysík, Jabkenice 56, 294 45 Jabkenice

Odvolané vystoupení z ČAS a B.R.N.O.
Jakub Gožďál, Dubňany (k 5.4. 1998)

Opravy k seznamu členů / Correction of the List of our Members

Nové e-mailové adresy:
Michal Artim: artimova@szubrno.cz
Aleš Kratochvíl: mlock.e@usa.net
Martin Netolický: netolicky@post.cz
Michal Rottenborn: ab04@telecom.cz
Regina Slatinská: regina.slatinska@digitis.cz
Alexandr Slatinský: uvedenou adresu nepoužívat
Jan Šafář: safar@post.cz

Stý člen sekce / 100 Members of B.R.N.O.

Dárci / Donnors

doc. Dušan Brozman, Nitra, SR
Josef Kodytek, Choceň
Jaroslav Jašek, Brno
Monika Mészárosová, Týniště n. Orlicí
ing. Jiří Veselý, Sloupnice

Děkujeme
Výročí našich členů / Anniversaries

20 let
Luboš Brát, Kolin (19. 3.)
Josef Kapitán, Šternberk (3. 5.)
Milan Švehla, Cheb (4. 5.)
Roman Mikušinec, Poníky, SR (4. 8.)

25 let
Lenka Šarounová, Dobřichovice (26. 7.)

30 let
Michal Rottenborn, Plzeň (19. 6.)

35 let
Jiří Nevral, Třebíč (22. 1.)

40 let
RNDr. Pavel Novák, Rajhrad (16. 5.)

45 let
Miroslav Král, Česká Lípa (4. 3.)

50 let
RNDr. Miroslav Kavan, Opava (8. 2.)
Jiří Hude, Brno (19. 3.)

[mz]

Článek L. Bráta převzat do časopisu Sterne und Weltraum

Brát's Article on Vixen Telescope Taken over by the Sterne und Weltraum

Literatura: Brát, L., 1997: Perseus 7, č. 3, str. 5-6
Perseus 1996, 6, č. 3, str. 9-12 a 24-26
Sterne und Weltraum 1998, 37, č. 4, str. 386
Došlá pozorování

New observations

V následujícím přehledu jsou uvedena v šechna pozorování doručená k publikaci na brněnskou hvězdárnu a předběžně zařazená k publikaci v období od 17. 3. do 20. 5. 1998. S potěšením lze konstatovat, že tentokrát pouze jediné pozorování neprošlo vstupní kontrolou RNDr. Petra Hájka (a on nepolevil ze svých požadavků). Jen tak dále.

Brát L., os. číslo 52
BU Dra 7 5 98 12440

Honzík L., os. číslo 202
W UMa 7 3 97 12432
UV Leo 7 3 97 12433
RX Her 3 8 97 12434
PV Cas 4 8 97 12435
AK Her 6 8 97 12436
X Tri 6 8 97 12437
V 346 Aql 12 8 97 12438
TW Dra 12 8 97 12439

Kratochvíl A., os. číslo 358
RW Mon 28 12 95 12416

Netolíček M., os. číslo 913
UV Leo 20 3 98 12494
UV Leo 26 3 98 12495
BD Gem 29 3 98 12496

Nevařil F., os. číslo 991
AK CMi 28 3 98 12481
FZ Del 28 10 97 12482

EG Cep 26 3 98 12483
AA UMa 29 3 98 12484

Polák J., os. číslo 575
RT And 4 8 97 12452
DI Peg 6 8 97 12460
X Tri 6 8 97 12461

Šafář J., os. číslo 707
XY Dra 16 3 98 12404
RY Cnc 15 3 98 12405
AR Boo 15 3 98 12406
GU Ori 15 3 98 12407
NN Mon 15 3 98 12408
VZ Leo 15 3 98 12409
CE Leo 15 3 98 12410
V 719 Her 12 5 98 12418
CC Com 12 5 98 12431
AR Boo 23 4 98 12472
EH Cnc 23 4 98 12473
BI Ser 23 4 98 12474
V 401 Lyr 23 4 98 12475
V 752 Oph 24 4 98 12476
V 1870 Cyg 23 4 98 12477
V 1045 Aql 24 4 98 12478
CC Com 21 4 98 12479
AH Lyn 21 4 98 12480
V 732 Her 27 3 98 12485
WX Dra 27 3 98 12486
HR Gem 26 3 98 12487
V 963 Cyg 27 3 98 12488
AR Boo 26 3 98 12489
V 379 Aur 26 3 98 12490
EH Cnc 26 3 98 12491
FM Vul 27 3 98 12492
<table>
<thead>
<tr>
<th>Star</th>
<th>RA</th>
<th>Dec</th>
<th>Epoch</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>FR Aur</td>
<td>26</td>
<td>3</td>
<td>98</td>
<td>12493</td>
</tr>
<tr>
<td>EH Cnc</td>
<td>22</td>
<td>3</td>
<td>98</td>
<td>12497</td>
</tr>
<tr>
<td>XY Dra</td>
<td>23</td>
<td>3</td>
<td>98</td>
<td>12498</td>
</tr>
<tr>
<td>CN Com</td>
<td>22</td>
<td>3</td>
<td>98</td>
<td>12499</td>
</tr>
<tr>
<td>NO Vul</td>
<td>23</td>
<td>3</td>
<td>98</td>
<td>12500</td>
</tr>
<tr>
<td>UX Leo</td>
<td>22</td>
<td>3</td>
<td>98</td>
<td>12501</td>
</tr>
<tr>
<td>TU Boo</td>
<td>22</td>
<td>3</td>
<td>98</td>
<td>12502</td>
</tr>
<tr>
<td>V 379 Aur</td>
<td>22</td>
<td>3</td>
<td>98</td>
<td>12503</td>
</tr>
<tr>
<td>CE Leo</td>
<td>22</td>
<td>3</td>
<td>98</td>
<td>12504</td>
</tr>
<tr>
<td>X Tri</td>
<td>7</td>
<td>8</td>
<td>97</td>
<td>12465</td>
</tr>
<tr>
<td>SV Cam</td>
<td>12</td>
<td>8</td>
<td>97</td>
<td>12466</td>
</tr>
<tr>
<td>SW Lac</td>
<td>12</td>
<td>8</td>
<td>97</td>
<td>12467</td>
</tr>
<tr>
<td>BH Dra</td>
<td>20</td>
<td>9</td>
<td>97</td>
<td>12468</td>
</tr>
<tr>
<td>SZ Psc</td>
<td>20</td>
<td>9</td>
<td>97</td>
<td>12469</td>
</tr>
<tr>
<td>W UMi</td>
<td>20</td>
<td>9</td>
<td>97</td>
<td>12470</td>
</tr>
<tr>
<td>Z Vul</td>
<td>20</td>
<td>9</td>
<td>97</td>
<td>12471</td>
</tr>
</tbody>
</table>

Větrovcová M., os. číslo 845

<table>
<thead>
<tr>
<th>Star</th>
<th>RA</th>
<th>Dec</th>
<th>Epoch</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>UV Leo</td>
<td>21</td>
<td>4</td>
<td>95</td>
<td>12411</td>
</tr>
<tr>
<td>W UMi</td>
<td>4</td>
<td>3</td>
<td>94</td>
<td>12412</td>
</tr>
<tr>
<td>EK Cep</td>
<td>9</td>
<td>7</td>
<td>95</td>
<td>12413</td>
</tr>
<tr>
<td>EG Cep</td>
<td>11</td>
<td>1</td>
<td>91</td>
<td>12414</td>
</tr>
<tr>
<td>UX Her</td>
<td>4</td>
<td>8</td>
<td>94</td>
<td>12415</td>
</tr>
<tr>
<td>W UMi</td>
<td>3</td>
<td>8</td>
<td>95</td>
<td>12417</td>
</tr>
<tr>
<td>SV Cam</td>
<td>1</td>
<td>2</td>
<td>97</td>
<td>12441</td>
</tr>
<tr>
<td>WY Cnc</td>
<td>1</td>
<td>2</td>
<td>97</td>
<td>12442</td>
</tr>
<tr>
<td>UV Leo</td>
<td>7</td>
<td>3</td>
<td>97</td>
<td>12443</td>
</tr>
<tr>
<td>W UMa</td>
<td>7</td>
<td>3</td>
<td>97</td>
<td>12444</td>
</tr>
<tr>
<td>RZ Com</td>
<td>9</td>
<td>5</td>
<td>97</td>
<td>12445</td>
</tr>
<tr>
<td>TX Her</td>
<td>16</td>
<td>5</td>
<td>97</td>
<td>12446</td>
</tr>
<tr>
<td>V 566 Oph</td>
<td>16</td>
<td>5</td>
<td>97</td>
<td>12447</td>
</tr>
<tr>
<td>W UMa</td>
<td>16</td>
<td>5</td>
<td>97</td>
<td>12448</td>
</tr>
<tr>
<td>SV Cam</td>
<td>6</td>
<td>6</td>
<td>97</td>
<td>12449</td>
</tr>
<tr>
<td>BS Dra</td>
<td>6</td>
<td>6</td>
<td>97</td>
<td>12450</td>
</tr>
<tr>
<td>SW Lac</td>
<td>6</td>
<td>6</td>
<td>97</td>
<td>12451</td>
</tr>
<tr>
<td>RT And</td>
<td>3</td>
<td>8</td>
<td>97</td>
<td>12453</td>
</tr>
<tr>
<td>RX Her</td>
<td>3</td>
<td>8</td>
<td>97</td>
<td>12454</td>
</tr>
<tr>
<td>PV Cas</td>
<td>4</td>
<td>8</td>
<td>97</td>
<td>12455</td>
</tr>
<tr>
<td>TW Cas</td>
<td>4</td>
<td>8</td>
<td>97</td>
<td>12456</td>
</tr>
<tr>
<td>SZ Her</td>
<td>4</td>
<td>8</td>
<td>97</td>
<td>12457</td>
</tr>
<tr>
<td>V 346 Aql</td>
<td>6</td>
<td>8</td>
<td>97</td>
<td>12458</td>
</tr>
<tr>
<td>DM Del</td>
<td>6</td>
<td>8</td>
<td>97</td>
<td>12459</td>
</tr>
<tr>
<td>X Tri</td>
<td>6</td>
<td>8</td>
<td>97</td>
<td>12462</td>
</tr>
<tr>
<td>EG Cep</td>
<td>7</td>
<td>8</td>
<td>97</td>
<td>12463</td>
</tr>
<tr>
<td>SW Lac</td>
<td>7</td>
<td>8</td>
<td>97</td>
<td>12464</td>
</tr>
</tbody>
</table>

Zejda M., os. číslo 891

<table>
<thead>
<tr>
<th>Star</th>
<th>RA</th>
<th>Dec</th>
<th>Epoch</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP Lac</td>
<td>10</td>
<td>5</td>
<td>98</td>
<td>12419</td>
</tr>
<tr>
<td>IM Cep</td>
<td>9</td>
<td>5</td>
<td>98</td>
<td>12420</td>
</tr>
<tr>
<td>V 1048 Cyg</td>
<td>9</td>
<td>5</td>
<td>98</td>
<td>12421</td>
</tr>
<tr>
<td>GZ Lyr</td>
<td>9</td>
<td>5</td>
<td>98</td>
<td>12422</td>
</tr>
<tr>
<td>V 963 Cyg</td>
<td>10</td>
<td>5</td>
<td>98</td>
<td>12423</td>
</tr>
<tr>
<td>V 1321 Cyg</td>
<td>10</td>
<td>5</td>
<td>98</td>
<td>12424</td>
</tr>
<tr>
<td>V 1787 Cyg</td>
<td>9</td>
<td>5</td>
<td>98</td>
<td>12425</td>
</tr>
<tr>
<td>CE Leo</td>
<td>17</td>
<td>4</td>
<td>98</td>
<td>12426</td>
</tr>
<tr>
<td>TY Boo</td>
<td>16</td>
<td>4</td>
<td>98</td>
<td>12427</td>
</tr>
<tr>
<td>AR Dra</td>
<td>15</td>
<td>4</td>
<td>98</td>
<td>12428</td>
</tr>
<tr>
<td>AR Boo</td>
<td>15</td>
<td>4</td>
<td>98</td>
<td>12429</td>
</tr>
<tr>
<td>CX Ser</td>
<td>17</td>
<td>4</td>
<td>98</td>
<td>12430</td>
</tr>
<tr>
<td>BI Ser</td>
<td>0</td>
<td>0</td>
<td>98</td>
<td>12505</td>
</tr>
<tr>
<td>CC Com</td>
<td>3</td>
<td>5</td>
<td>98</td>
<td>12506</td>
</tr>
<tr>
<td>V 370 Cyg</td>
<td>14</td>
<td>5</td>
<td>98</td>
<td>12507</td>
</tr>
<tr>
<td>LT Aql</td>
<td>14</td>
<td>5</td>
<td>98</td>
<td>12508</td>
</tr>
<tr>
<td>GI Vul</td>
<td>13</td>
<td>5</td>
<td>98</td>
<td>12509</td>
</tr>
<tr>
<td>LL Cep</td>
<td>0</td>
<td>0</td>
<td>98</td>
<td>12510</td>
</tr>
<tr>
<td>V 443 Cyg</td>
<td>14</td>
<td>5</td>
<td>98</td>
<td>12511</td>
</tr>
<tr>
<td>NO Vul</td>
<td>3</td>
<td>5</td>
<td>98</td>
<td>12512</td>
</tr>
<tr>
<td>NO Vul 1</td>
<td>3</td>
<td>5</td>
<td>98</td>
<td>12513</td>
</tr>
</tbody>
</table>

[mz]
PERSEUS, nepravidelný věstník pro pozorovatele proměnných hvězd. Ročník 7.

Vydává B.R.N.O.–sekcí pozorovatelů proměnných hvězd České astronomické společnosti vespolupráci s Hvězdárnou a planetáriem Mikuláše Koperníka v Brně.
Adresa redakce: Redakce Persea, Hvězdárna a planetárium Mikuláše Koperníka, Kraví hora 2, 616 00 Brno. (05/41 32 12 87, E–mail: QZEJDA@FEE.VUTBR.CZ.)
Bankovní spojení: Komerční banka Brno–město, č. účtu 9633–621/0100, var. symbol 10, název účtu HVĚZDÁRNA A PLANETÁRIUM Mikuláše Koperníka, Kraví hora, 616 00 Brno.
Výkonný redaktor: RNDr. Miloslav Zejda.
Číslo 2/98 dáno do tisku 5. 6. 1998 náklad 140 ks.