Dokončení diskuse o vizuálním pozorování proměnných hvězd

EF CANCRI - NOVÁ HVĚZDA TYPU RRc
NSV 2544 Cam JE PROMĚNNÁ TYPU W UMa
BÝT ČI NEBÝT CEFÉIDOU? TOT OTÁZKA...
TW Dra - TŘETÍ ZÁKRYTOVÁ DVOJVĚZDA S PULSUJICÍ SLOŽKOU
Obr. 1/ Figure 1 - Těsné okolí NSV 2544. Prázdným kolečkem je znázorněna správná poloha a plným špatná poloha nové proměnné hvězdy. * Close vicinity of NSV 2544, based on the GSC catalogue. Both the correct identification (empty circle) and the former wrong identification (filled circle) are marked.

Obr. 2/ Figure 2 - Fázová křivka NSV 2544 sestrojená z CCD pozorování ve filtru V. * Our CCD V band light curve of NSV 2544, folded with the orbital period.

Obrázky ke článku M. Haltufa „NSV 2544 Cam je proměnná typu W UMa“ na straně 6.
K pozorování proměnných hvězd, R. Hudec 2
Notes To Variable Star Observations

Vyjádření RASNZ, F. Bateson ... 3
RASNYZ Proclamation

EF Cancri - nová hvězda typu RRc, O. Pejcha, P. Sobotka 4
EF Cancri: a New RRc Star

NSV 2544 Cam je proměnná typu W UMa, M. Haltuf 6
NSV 2544 Cam: a W UMa Type Eclipsing Binary

Být či nebýt cefeidou? Toť otázka..., O. Pejcha 9
To Be Or Not To Be a Cepheid? That Is a Question...

TW Dra - třetí zákrytová dvojhvězda
s pulsující složkou, M. Zejda .. 12
TW Dra - the Third Eclipsing Binary With a Pulsating Component

XMedGraf, L. Brát .. 15
XMedGraf Software

Variability of The Red Giant TZ Cygni, J. Speil 19
Proměnnost červeného obra TZ Cygni

Co má společného Einstein a BL Tau, P. Sobotka 21
About The Relation Between Einstein and BL Tau?

Mezinárodní konference o výzkumu
proměnných hvězd Brno 2001, P. Hejduk 24
International Conference on Variable Star Research Brno 2001

2. setkání uživatelů CCD techniky, K. Koss 25
2nd Workshop of Users of CCD

Zápis z plenární schůze B.R.N.O. .. 26

Proměnnářské otázky .. 27

Došlá pozorování, L. Brát, M. Zejda 30
New Observations

Uzávěrky příšťích čísel: číslo 1/2002 - 15. 01. 2002
číslo 2/2002 - 15. 03. 2002
číslo 3/2002 - 15. 05. 2002
Dvěma články pokračuje diskuze z Persea 5/2001 ještě k vizuálním pozorováním:

K pozorování proměnných hvězd

René Hudec

Notes to Variable Star Observations

skupina astrofyziky vysokých energií, ASÚ AV ČR Ondřejov

V určitých oblastech astrofyziky stále vizuální pozorování svůj význam mění. Na obloze jsou tisíce zajímavých proměnných objektů, které je důležité monitorovat. Dobrá spolupráce s profesionálním pracovištěm je nezbytná, pokud má mít úsilí vědecký význam.

Visual observations still have their scientific meaning in selected areas of astrophysics. There are thousands of interesting variable objects which are important to observe. It is necessary to cooperate with the professional astronomers if the observations are made to have scientific meaning.

Během své téměř třicetileté praxe s multifrekvenční analýzou vysokoenergetických zdrojů, z nichž řadu představují optické proměnné objekty, jsem získal mnoho zkušeností s vizuálními odhady, o nichž se s vámi chci podělit v tomto příspěvku.

a) Generování světelných křivek a studium díluhodobě proměnností

Pro tento účel jsme často používali vizuální odhady na archivních fotodeskách. Většina těchto odhadů ovšem byla pořízena profesionály za dodržení určitých podmínek, jako je vhodný výběr a spolehlivá kalibrace srovnávacích hvězd apod. Přesnost těchto měření se pohybovala v závislosti na kvalitě fotodesek mezi 0,05 a 0,15 mag, což je prakticky srovnatelné s jinými vesměs časově náročnějšími postupy, jako je deskový fotometr či CCD skener. U desek má metoda vizuálních odhadů dodnes podstatněni, pokud potřebujeme s minimálním časovým úsilím generovat světelnou křivku jediného objektu (jeden odhad se dá pořídit za asi 10 sekund, zatímco digitální záznam jedné deský může v některých případech představovat i řadově hodiny). Nastupující rozsáhlá
digitalizace desek a vývoj příslušných programů ovšem tuto situaci změní během několika let velmi zásadněm způsobem.

Vizuální odhady na obloze - ne na deskách - jsem ke své analýze použil spíše jen výjimečně. Pracoval jsem přítom například s vizuálními odhady německého amatéra Grzelczyka z Coburgu, který například pro AM Her vygeneroval světelnou křivku s tisíci body velmi věrně odpovídající měřením pořízeným jinými metody. Zřejmě tedy systematická měření zkušenými pozorovateli při dodržení všech podmínek, jako je například volba vhodných srovnávacích hvězd s ohledem na spektrální třídu studovaného objektu, mohou téměř přesně odpovídat objektivním metodám. To dokazují i analýzy V. Šimona využívající AAVSO, AFOEV a VSNET data pro některé objekty, přijaté k publikaci v recenzovaných časopisech. Nesystématická pozorování, tedy čidou různých pozorovatelů, každý jistě jiné měření, asi opravdu většinou moc přinesou nejsou. Nicméně amplitude některých objektů dosahují několik magnitud a tady může mít téměř každé vizuální pozorování svůj význam zejména tím, že pozorní odborníky na aktivní stav daného objektu a potřebu jeho
analýzy objektivní metodou. Spolupráce s profesionálním pracovištěm je ovšem více než zapotřebí, ale to asi platí pro všechna amatéřská pozorování obecně, pokud mají mít vědecký význam.

b) Detekce optických transientů

V této oblasti jsme s vizuálními pozorováními více než velmi opatrní. Řada takových pozorování je neobjektivní, například na základě fyziologických vjemů. Ale netže paušalizovat - máme i reálná pozorování záběrů na obloze, následně potvrzené na fotodiskách. To pak význam má, protože nás to upozorní na úkaz, který je reálně detekován objektivní metodou, ale bez upozornění by naši pozornost unikl. Nicméně opakuji, že bez následného ověření objektivní metodou tato data vědecky využít neteze.

c) CCD monitory

CCD monitory oblohy jistě nastupují. Zkušenosti máme například s americkým ROTSE. Jejich aplikace při generování světelných křivek proměnných hvězd je velmi pěkným výsledkem diplomové práce Jana Štrobla z MFF UK. Ovšem mezi existenci digitálního archivu a generováním těchto křivek je ještě hodně co řešit. Totéž platí o digitalizovaných archivačích fotodesek.

d) Amatéři a CCD

To je jistě silná cesta. Zatím je ovšem stále problémem nákladnost CCD kamery. Pokud jde o délekovod, lze ho do určité míry nahradit například čočkovým objektivem firmy Meopta v ceně cca 10 000 Kč, lze tak snadno docílit limitní magnitudy asi 15. Podobná širokoúhlá kamera je v provozu v Ondřejově v rámci našeho robotického teleskopu BART.

Závěr

Myslím si, že v určitých oblastech stále vizuální pozorování svůj význam mají. Na obloze jsou tisíce zajímavých proměnných objektů, které je důležité monitorovat. To se sice v současnosti začíná dít i CCD monitory, ale analýza dat z nich v tomto směru zatím vážně. Z tohoto aspekta je asi zejména ceněné upozornění na zjasnění a aktivní fáze řady kategorií astrofyzikálních objektů. Dobrá spolupráce s profesionálním pracovištěm je nezbytná, pokud má mít úsilí vědecký význam.

Vyjádření RASNZ

RASNZ Proclamation

V jsem oznámil, že přihlédám odstoupení z postu ředitele Sekce proměnných hvězd, kterým jsem byl 75 let. Během tohoto dlouhého období se řada pozorovatelů stala členy Sekce, ale jen malá část si podívala svůj zájem po mnoho let.

Při pozorování dlouhoperiodických hvězd, kterými se zabývá RASNZ i MEDUZA, zvláště SR hvězd, je těžké udržet zájem pozorovatelů, protože tyto hvězdy s nimi málo. Dle mých zkušeností je mnohem snazší udržet lidský zájem při pozorování kataklizmických hvězd, protože tato jsou vyhledávána profesionality, jeliček jiný způsob, jak zjistit střední délku cyklů vzplanutí takových hvězd, není.

Dobře si pamatují, jak na setkání Komise pro proměnné hvězdy IAU před 40 lety jeden profesionál prohlásil, že amatéři pozorující
mírity nedělají nic užitečného pro vědu krom popularizace astronomie."

Tento profesionál nás od svého výroku
mnohokrát žádal o pozorování mnoha
proměnných hvězd, (kterých se výrok týkal),
pro svoje výzkumy. Dobře se s ním znám
a pokaždé, když si pláce o data, tak mu jeho
výrok připomínám a on připouští, že neměl
nikdy učinit tak bláznivé prohlášení. To vás
může podpořit v problémech, které teď
řešíte. Momentální názory některých profe-
sionálů by neměly způsobit příliš radikální
změny v dlouhodobých pozorovacích pro-
gramech.

EF Cancri - nová hvězda typu RRe Ondřej Pejcha, Petr Sobotka

EF Cancri: a New RRe Star

Pomocí měření ve filtru V pořízených na
brněnské hvězdárně se podařilo zjistit, že EF
Cnc je hvězda typu RRe. V článku jsou udá-
ny nové světelné elementy a výsledky Four-
erovy dekompozice získané světelné křivky.

Using our V band CCD data, we found
that EF Cnc is an RRe type star. We pre-
sent a new ephemeris and Fourier de-
composition of our light curve.

E F Cnc (= WR 100 = AN 2.1954 = NSV 4187 = GSC 1942.1380, α= 08h
40m. 39s, δ= +23° 15' 51") byla zařazena do NSV katalogu na základě
studie Kippenhahna (1955) jako proměnná s rychlými změnami jasnos-
ti v rozmezí 10,7 - 11,9 mag (pg). V minulosti se hvězdou zábýval Locher
(1983), který na základě svých vizuálních pozorování prohlásil EF Cnc za
hvězdu typu W UMa s periodou 0,5912 dne a s amplitudou menší, než udává
NSV katalog. Mnoho vizuálních minim v databázi BAV bylo pořízeno v osm-
desátých letech po publikaci Locherovy práce.

Obr. 1/Figure 1 - Fázová světelná
křivka EF Cnc z měření ve V fil-
tru s vyznačením proložení
Fourierovou řadou 10. řádu.
Zvýšený rozptyl křivky v oblas-
tech kolem maxima a minima-
ení reálný jev na hvězdi, ale
je způsoben přírodními
efekty. * Folded V-band light
curve of EF Cnc (small circles)
and the 10th order Fourier fit
(solid line). A higher scatter in
both maximum and minimum is
due to the instrumental effects.
EF Cnc byla vybrána pro další CCD pozorování díky katalogu PROSPEKTOR (Haltuf 2001), který obsahuje zákrytové dvojihvězdy s neznámými nebo nepřesnými elementy. Ve čtyřech nocích (14./15. 2.; 16./17. 2.; 5./6. 4. a 10./11. 5. 2001) bylo pořízeno celkem 1171 CCD snímků pomocí kamery SBIG ST-7 na dalekohledu brněnské hvězdárny o průměru 40 cm. Pro všechna pozorování byl použit filtr V Kronova -Causinova systému a 60 sekundové expozice. Jako srovnávací hvězdu jsme použili GSC 1942.2816 (13,06 V mag) a jako hvězdy kontrolní GSC 1942.2271 (12,33 V mag) a GSC 1942.1620 (13,83 V mag). Hvězdné velikosti srovnávacích a kontrolních hvězd jsme získali kalibrací pomocí blízkých standardních polí GSPC (Lasker a kol. 1988). Náhodná chyba měření je poměrně nízká, nicméně je možný systematický posun až o 0,1 mag.

Pohled na obrázek 1 s fázovou světelnou křivkou (viz určení periody níže) EF Cnc vylučuje zákryty. Z velké asymetričnosti světelné křivky (Q = 0,41) a malého hrbu těsně před hlavním maximem můžeme usuzovat, že EF Cnc náleží k hvězdám typu RRc. Změny jasnosti probíhají mezi 11,18 a 11,73 mag v oboru V.

Dalším krokem v analýze bylo určení periody. Přibližnou hodnotu jsme získali z vizuálních minim v databázi BAV a jednoho CCD maxima od Bruce Krobuska (NY, USA). Minima byla přeformulována na maxima posunutím o 0,41*P vpřed (viz asymetričnost křivky). Z extrémů jasnosti je zřejmé, že EF Cnc poměrně razonně mění periodu, s největší pravděpodobností dochází k jejímu poklesu. Bohužel jsou extrémy jasnosti rozmístěny v čase poměrně nešťastně a nerovnoměrně, takže není možné udělat jednoznačné závěry o těchto změnách. Tudíž jsme určili periodu pouze z našich tří okamžiků maxim:

Max (HJD) = 2451955,529 (±0,004) + 0,2956885 (±0,0000036)*E.

Tabulka 1: Fyzikální a Fourierovy parametry EF Cnc. Hmotnost a logaritmus efektivní teploty jsou ve slunečních jednotkách. „Y” je poměrné hmotnostní zástupení helia ve hvězdě.

<table>
<thead>
<tr>
<th>parametr</th>
<th>hodnota</th>
<th>chyba</th>
<th>parametr</th>
<th>hodnota</th>
<th>chyba</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>0,268</td>
<td>0,001</td>
<td>Hmotnost</td>
<td>0,655</td>
<td>0,012</td>
</tr>
<tr>
<td>R21</td>
<td>0,209</td>
<td>0,005</td>
<td>log L</td>
<td>1,702</td>
<td>0,004</td>
</tr>
<tr>
<td>R31</td>
<td>0,075</td>
<td>0,005</td>
<td>Teff</td>
<td>7356,0</td>
<td>29,0</td>
</tr>
<tr>
<td>R41</td>
<td>0,057</td>
<td>0,005</td>
<td>Y</td>
<td>0,272</td>
<td>0,005</td>
</tr>
<tr>
<td>j21</td>
<td>3,066</td>
<td>0,028</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>j31</td>
<td>5,858</td>
<td>0,071</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>j41</td>
<td>3,220</td>
<td>0,094</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Poděkování: Autoři jsou vděční za poskytnutý pozorovací čas, dalekohled a podporu Hvězdárny a planetária Mikuláše Koperníka v Brně; L. Brátovi, L. Královi, F. Hrochovi a R. Novákoví za poskytnutý software a J. Greavesovi za pečlivou kontrolu anglického originálu. Dále děkujeme F. Agererovi za poskytnutí dat BAV a B. Krobusekovi za jeho nepublikované pozorování, která nám velmi pomohla učinit si přesnější obrázek o dlouhodobých změnách peridy.

Literatura/References:

Locher, K., 1983, BBSAG Bull., No. 65

NSV 2544 Cam je proměnná typu W UMa

Michal Haltuf

NSV 2544 Cam: a W UMa Type Eclipsing Binary

Na základě vizuálního objevu a následné CCD kampaně jsme zjistili, že NSV 2544 = GSC 4344.123 je zákrytová dvojhvězda typu W UMa.

NSV 2544 = GSC 4344.123 was found to be an eclipsing binary of the W UMa type on the basis of our CCD V band measurements.

Po EF Boo byla NSV 2544 druhou hvězdou, kterou jsem si vybral z katalogu PROSPEKTOR, seznamu zákrytových dvojhvězd s neznámými elementy. NSV 2544 si o pozorování přímo říkala, neboť její jasnost se pohybuje
v tom správném rozmezí pro dalekohled, s nímž pozoruji. Hlavně se ale nachází velice blízko u fyzických proměnných S Cam a AU Cam, takže nalézt tuto hvězdu na obloze neměl být nijak zvlášť obtížný úkol. Její poloha je navíc vyznačená i na mapce skupiny MEDÚZA. Pod heslem dvakrát měř a jednou řez jsem požádal Petra Sobotku o zaslání jednoho z měřů článků o NSV 2544, které kdy v odborné literatuře vyšly, konkrétně o článek v časopise Peremennýje zvezdy (Jefremov 1963). Po zvládnutí základů azubky jsem s hružou zjistil, že autoři onoho článku uvádí jako NSV 2544 hvězdu úplně jinou než mapka skupiny MEDÚZA. Navíc jimi označená hvězda se již 100 let používala jako srovnávací hvězda pro S Cam a někdy se předpokládá, že by si za oních sto let nikdo nevšiml její proměnnosti! Nicméně objektivním fotografickým deskám, na jejichž základě autoři k tomuto závěru dospěli, se nedá nevěřit, a tak jsem zkoušel štěstí a jen se pozorovat jimi otestovanou hvězdu. (Skutečná poloha proměnné je na obrázku 1 na druhé straně obálky Persea).

Skutečnost, že hvězda, již mnozí pozorovatelé u nás a hlavně ve světě celé století považovali za konstantní a délali podle ní nesčíslné množství odhadů, se mění, navíc dosti výrazně - o téměř 0,6 mag, vyšla najevo večer 15. února 2001. Bylo to pouhé dva měsíce po zahájení jejího sledování, neboť tehdy se mi jevila o půl magnitudy slabší než obvykle a díky nepříliš dobřím podmínkám nebyla téměř vidět. Původně jsem to dával na vinu právě pozorovacím podmínkám, ale když jsem po kolečku kolem zahrady uběhnutém, abych zahal špatné myšlenky a zcestné odhady, nezdála se o nic jasnější a dál tvrdohlavě balancovala na hranici viditelnosti, bylo jasně, že jsem, asi nalezl minimum, což se také následně ráno při zpracování potvrdilo. Když poté i druhý večer se zdála její jasnost poněkud nižší než obvykle, neváhal jsem a přes poměrně pokročilou hodinu jsem bleskově zavolal Petrovi na mobil. Jaké to překvapení - Petr znovu seděl u brněnské CCD kamery a pozoroval s ní EF Cnc (viz článek v tomto Perseovi), takže pro něj nebylo žádným problémem přejít několikrát za noc na políčko NSV 2544 a bude potvrdit nález minima anebo konstatovat mou naprostou pozorovatelskou neschopnost. IBVS číslo 5132 je dokladem o správnosti první z variant...

Historie postupného objevování proměnnosti NSV 2544 začíná už roku 1894, kdy Yendell na základě svých vizuálních pozorování S Cam uvěděl krátkou poznámku o pravděpodobné proměnnosti jedné ze srovnávaček s tím, že její perioda je asi dlouhá. Nepublikoval však žádný nákrTex konička, nýbrž jen přibližný popis polohy hvězdy, což její identifikaci znesnadňuje. Böhme v roce 1937 v jed-
nom ze svých přehledů v časopise Astronomische Nachrichten uvádí na základě svého fotografického pozorování přibližnou periodu 20 dnů, ovšem s tím, že ne všechna pozorování se dají podle této periody dobře složit. Tak trochu chaos do toho vnesl Mayall (1951), který ohlašuje nezávislý objev proměnností tohoto objektu, následně však toto dementuje a chyběné jako proměnnou označuje hvězdu dnes známou jako GSC 4344.697. Tato chyba se ovšem přenesla na mapu AAVSO a z ní pak do celého světa, dokonce i na zmínovanou mapu skupiny MEDÚZA. Donedávna poslední záznam o NSV 2544 publikoval Jefremov v roce 1963 právě v oních Peremenných zvezdách - podle 20 fotografických měření jasně ukazuje skutečnou proměnnou (GSC 4344.123), z nějakého zvláštního důvodu však byl tento Jefremovův článek buď všeobecně přehlížen nebo o něm nikdo nevěděl.

Do následné pozorovací kampaně organizované P. Sobotkou se zapojily kromě hvězdářů v Brně také hvězdářy v Hradci Králové a Valašském Meziříčí. Během několika měsíců se podařilo získat 1183 CCD snímků v oboru V. Z těchto pozorování jsme usoudili, že proměnná GSC 4344.123 patří mezi zákrytové dvojihvězdy typu β Lyr nebo W UMa. Hloubka primárního minima je 0,63 mag a sekundárního 0,44 mag v oboru V. Za použití programu AVE (Barbera 2000), tedy Kwee a Van Woerdenovy metody, jsme určili 13 okamžiků minim. To nám umožnilo stanovit světelné elementy NSV 2544 na

$$\text{Min. I} = \text{HJD 2451975.6040 (±0.0006)} + 0.4341474 (±0.0000043) \text{E}.$$

Na obrázku 2 (na druhé straně obálky Persea) si můžete prohlédnout fázovou světelnou křivku, která byla podle těchto elementů sestavena.

L. Brát se také pokusil vytvořit předběžný (máme jen měření v jednom filtře) model soustavy pomocí programu Nighfall (Wichmann 2000). Úhel sklonu oběžné dráhy je i = (74 ± 2)°, faktor vyplnění obou složek je (1,06 ± 0,02), což svědčí o příslušnosti k typu W UMa.

Tahle jasná hvězda si na definitivní objevení podstaty své proměnnosti musela počkat pěknou řádku let a nedá se čekat, že by mohla být nějakou extravýjimkou. Odhalit tajemství nějaké další může kdokoliv z vás.

Literatura/References:
Böhme, S., 1937, Astron. Nachr., 261, 437
Být či nebýt cefeidou? Toť otázka... Ondřej Pejcha

To Be or Not to Be a Cepheid? That is a Question...

Cefeida V19 v galaxii M33 za posledních ~100 let snížila svoji amplitudu na desetinu a střední jasnost zvětšila o 0,5 mag. V článku jsou probírána různá vysvětlení takového chování.

The Cepheid V19 in M 33 decreased its amplitude by a factor of 10 and increased the mean brightness by about 0,5 mag in last about 100 years. We discuss the causes of such a behaviour and conclude that there is no plausible explanation for both V19 and other stars with similar behaviour.

Vždy od roku 1925 známe pravou podstatu spirálních mlhovin a vděčíme za to proměnným hvězdám zvaným cefeidy, které Hubble objevil v blízké galaxii NGC 6822. Po M31 dokázal totéž i u M33, kde objevil cefeidy roku 1926. Další pokusy o nalezení proměnných hvězd v M33 se uskutečnily až po padesátí letech. Ale první skutečně moderní monitoring extragalaktických proměnných pomocí CCD začal až roku 1996 v rámci projektu DIRECT (Kaluzny et al. 1998).

První, co každý vědec udělá při zkoumání získaných údajů, je srovnání svých výsledků s předchozími studiemi. Jaké ale bylo překvapení L. Macriho a kolektivu (2001) ze skupiny kolem projektu DIRECT, když nedokázali v datech tohoto projektu odhalit proměnnost hvězdy V19 v blízké galaxii M33! A to i přesto, že se jedná o poměrně jasnou (~19 mag), izolovanou cefeidu, která je daleko od jádra galaxie a má se měnit s amplitudou 1,1 mag a periodou 54,7 dnů.

všechna slova. Mimochodem, v projektu DIRECT bylo vykonáno měření okolí V19 ve 119 nocích ve filtrech BVI.

I přes skandálnost faktů (jak si může nějaká hvězda dovolit jen tak přestat pulzovat?), existuje ve světě proměnných hvězd spousta případů, kdy se mění amplituda pulsaci. Nicméně u žádné klasické cefeidy dosud nebylo pozorováno tak výrazné snížení amplitudy pulsací. Jak jsou na tom ostatní typy proměnných hvězd?

Z cefeid populace II (hvězdy typu W Vir) vyniká RU Cam, která v roce 1965 najednou zmenšila amplitudu pulzací z 1 mag na 0,1 - 0,2 mag. Nicméně, pokud by V19 v M33 byla cefeidou populace II, musela by být pro stejnou periodu asi o 2 mag slabší. Bohužel u hvězdy typu W Vir nejsou známé změny střední jasnosti, nicméně hvězdy typu RV Lo (W Vir s dlouhou periodu) tak činí periodicky.

Jak už bylo zmíněno, V19 tedy patří k populaci I (resp. její obdobě v M33), ve které se vyskytuje několik zvláštních objektů. Nejkrátkovějším případem je V473 Lyr (P = 1,49 d), která periodicky zmenšuje a zvětšuje svoji amplitudu až na patnáctinu maximální hodnoty. Vědci se domnívají, že je to způsobeno interakcími mezi pulzačními módy vyšších řádů, nicméně přesně neví nikdo nic. Každopádně rozdíl mezi dobami tvrání poklesu amplitudy u V473 Lyr a u
V19 v M33 je velmi výrazný (dny vůči rokům). Dalším zvláštním objektem je Polárka, která za posledních 50 let zmenšila svou amplitudu na třetinu a posledních asi patnáct let je přibližně konstantní. Také zde by za všechno mohly být zodpovědné interakce mezi mody vyšších řádů jako u V473 Lyr. Nicméně kromě toho, že nikdo opět neví téměř nic, amplituda Polárky byla vždy velmi malá (pod 0,1 mag), což také vylučuje přímé srovnání s V19 v M33. A úplně nakonec přichází fakt, že mnoho objektů se nachází v pásu nestability, který obsahuje hvězdy, jež by podle dynamických modelů měly pulzovat, a přitom u nich nepozorujeme vůbec žádné změny!

Hvězdy typu UU Her (stejně jako hvězdy typu SRd jsou to nadobří) také mění svou amplitudu - uprostřed pulzačního cyklu se najednou zastaví a po několika měsících pokračují dále. Amplitudu mají menší než 0,3 mag (kromě samotné UU Her). Možná je V19 více podobná svitivým modrým proměnným (LBV), kteří kupodivu nejsou vůdce modré (např. 164 G Sco o teplotě 10000 K). LBV hvězdy často pulzují, některé dokonce jako cefeidy (V810 Cen), ale vždy s amplitudou menší než 0,1 mag a s více periodami.

Kromě seznamu Marciho a kol. (2001) bych si dovolil přidat ještě příklad z poloprávědných proměnných, kde několik hvězd (V Boo, RU Cyg, R Dor), dlouhodobě zmenšuje svoji amplitudu. Nicméně u žádné z nich se nemění střední jasnost a o přičínách u těchto hvězd se neví vůbec nic (kromě tvrzení o přechodu mezi Mira-SR a poznačků převzatých ze studia cefeid jako V473 Lyr, které na V19 aplikovat nejdu). Jiné SR hvězdy (RX UMa) také mění svoji amplitudu a střední jasnost, ale cyklickým zřejmě jsou příčinou neradiální pulsace kombinované s rotační periodou (Kiss et al. 2001).

Záhada pulsací V19 v M33 se jeví jako hluboká a velmi závažná - takové objekty mohou, pokud by se vyskytovaly častěji, deformovat výsledky našeho měření vzdáleností cizích galaxií.

Literatura/ References:
TW Dra - the Third Eclipsing Binary with a Pulsating Component

There is a new matter of interest in the case of the eclipsing binary star TW Dra of BRNO observing programme - delta Scuti pulsation in the primary component has been detected.

Obr. 1/ Figure 1 - Světelná křivka z vizuálních pozorování autora 1983-84
* Visual light curve from the author's observations in 1983-4

Obr. 2/ Figure 2 - Světelná křivka ze CCD pozorování (filtr V) autora 2000-2001
světelnou křivku takřka ze současnosti (viz obr. 2). Graf O-C (obr. 3) je velmi zajímavý a změna přibližně jeden den za půl století při oběžné periodě 2,8 dne je poměrně značná. Navíc se při detailním pohledu na graf O-C po roce 1950 objeví i drobné fluktuace změn hodnot O-C (viz obr. 4).

Už jen toto vše činí z TW Dra objekt hodný naší pozornosti. Soustava však upoutala pozornost i rusko-ukrajinské trojice Kusakin, Mkrtichian, Gamarova.
Obr. 5/ Figure 5 - Detekované pulsace primární složky * The detected pulsation of the primary component (IBVS 5106)

Ti se v rámci Central Asian Network zaměřují na hledání zákrytových dvojhvězd s pulsujícími komponentami. Po R CMa (viz Perseus 4/2000) a AS Eri získali další úlohy právě v podobě TW Dra. Soustavu pozorovali dvě noci v dubnu letošního roku. V získané světelné křivce objevili periodické změny jasnosti s malou amplitudou (poamoamplituda 0,0021 ± 0,0003 mag) a periodou 0,0556 dne (viz obr. 5).

TW Dra je polodotyková zákrytová dvoj hvězda s primární složkou spektrální třídy A5(8) V a sekundární složkou K0 III. Jestliže vezmeme parametry soustavy dle Svečníkova a Kuzněcové (1990), hmotnost M=1,7 M_☉ a poloměr R = 2,4 R_☉, dostaneme střední hustotu primární složky 0,123 hustoty sluneční, což vede ke klasifikaci konstantě Q=0,0190. Tato hodnota je blízká druhému harmonickému tónu nízkých podélných módů.
Poznámka:
TW Dra pozorovali na počátku 80. let Papoušek, Tremko a Vetešník. Jejich pozorování vyšla v časopise Folia brněnské přírodovědecké fakulty dnešní Masarykovy univerzity. Poté, co nepříliš známý časopis dostal do ruky David Mrktichian (člen mezinárodní konference v Brně), přišla zajímavá zpráva: „Během pozorování jsem zpracoval první část dat o TW. Pulzace jsou dobře patrné!“ Jak je vidět, mohou být prospěšné i „nezajímavé“ a zdlouhavé tabulky dat, když se dostanou do správných rukou.

Literatura/ References:
Papoušek, J., Tremko, J., Vetešník, M., 1984, Folia Facultatis scientiarum naturalium Universitatis Purkyniæae Brunnensis, XXV, 4
Zejda, M., 1984, Zákruty pravěká hvězda TW Dra - práce SOČ
Zejda M., 1986, Práce hvězdárny a planetária M. Koperníka v Brně (Contribution of N. Copernicus Observatory and Planetarium Brno), No. 27, 41

XMedGraf
Luboš Brát

XMedGraf

Během roku 2000 vstoupil do skupiny MEDÚZA František Bílek a rovnou vedení skupiny nabídli své služby v oblasti psaní software pro systémy Microsoft Windows. Vzhledem k tomu, že jsme tehdy mohli kontrolovat světelné křivky jen velmi zdlouhavou cestou exportem dat z databáze a prohlédnutím v nějakém univerzálním software na kreslení grafů, byla volba nasnadě. Petr Sobotka požádal Františka, zda by nemohl vyvinout program, který by načítal naši databázi pozorování (jeden rozsáhlý .DBF soubor) a jednoduchým kliknutím vykreslil světelnou křivku.

Téměř rok pracoval autor na námi zadaném úkolu a po mnoha připomínkách ze strany vedení skupiny MEDÚZA nakonec dokončil program ve verzi 1.0. Byl pojmenován MedGraf. MedGraf se stal nedocenitelným pomocníkem mnoha pozorovatelů a především autora tohoto článku, jakožto správce databáze skupiny MEDÚZA.

The XMedGraf is a system-independent ‘GUI’ program that allows the user to easily plot and study the light curves from the MEDÚZA database or any ASCII files. More info and download at http://www.meduza.info/software/xmèdgraf.

Program načítá jakékoliv množství databází ve formátu MEDÚZA (DBF), a to jak vizuálních, tak i CCD.

Seznam dostupných objektů se generuje automaticky a jediným kliknutím myši je možné vykreslit si světelnou křivku. Seznam lze filtrovat podle libovolného kritéria a všechna kritéria lze kombinovat. Je možné např. zobrazit objekty, které pozoruje určitý pozorovatel, popřípadě které pozoroval určitý pozorovatel v tom a tom roce. Zvláštní funkcí je možnost zobrazovat jen objekty v programu skupiny MEDÚZA.

Vykreslenou světelnou křivku lze zvětšovat tahnutím myši. Je možné zvýraznit určitého pozorovatele nebo skupinu pozorovatelů. Kliknutím na bod na křivce je možné zjistit o daném pozorování všechny údaje z databáze.

Velmi zajímavou funkcí při vykreslování křivek je možnost vertikálního či horizontálního posunu vybraných bodů (např. pro určitého pozorovatele nebo pro zvolenou použitou srovnávací hvězdu). Dále je možné do křivky importovat externí data - například fotometrická CCD data do vizualní světelné křivky, apod. Rovněž takto importovaná data lze libovolně posunovat.

V kterémkoliv okamžiku si můžete momentálně vykreslená data vypsat a případně uložit do ASCII souboru k další práci.

Program umožňuje tvorbu podrobných statistik z vybrané databáze. Kromě samozřejmostí, jako je statistika pozorovatelů a statistika objektů v databázi pozorování, je možné aplikovat na data před vypočtením statistiky libovolný filtr -
např. výpis aktivity pozorovatelů v tom a tom měsíci a v tom a tom souhvězdí, atd.

Pro odborníky byla přidána možnost napsat všechny filtry na data či objekty jako regulární výraz Perlu. Výkonnost tohoto nástroje ocení každý, kdo zná sílu regulárních výrazů pod Linuxem.

Pokud používáte software MuniPack na zpracování svých CCD pozorování, můžete XMedGraf použít v závěrečné fázi na prohlížení svých křivek či minim. XMedGraf automaticky rozpoznává formát importovaných ASCII dat. XMedGraf obsahuje i speciální funkci na převracení minim, co jsou „vzhůru nohama“, stejně tak i funkci na posun dat na absolutní hodnotu dle zvolené srovnávací hvězdy.

Aby bylo možné lépe si prohlížet zašuměné světelné křivky od vizuálních pozorovatelů, má v sobě XMedGraf připravenou funkci, která dle zvolených parametrů provede vyhlazení křivky metodou klouzavých průměrů.

Světelné křivky pro periodické proměnné hvězdy je možné zobrazovat jako fázové křivky, přičemž potřebné katalogové údaje lze nahrávat z GCVS nebo uživatelského katalogu, do kterého byl implicitně nahrán celý BRKA 2001.

XMedGraf umožňuje převádět geocentrická data na heliocentrická.
Souřadnice objektu lze rovněž nahrávat z GCVS nebo z uživatelského katalogu.

Aby bylo prohlížení světelných křivek co nejvíce informativní, je k XMedGrafu přidán katalog GCVS a katalog MEKA.

Výčet úplně všech funkcí by byl asi zbytečný, ale ty nejdůležitější byly zmíněny. Program je velmi stabilní a doposud se mi ho nepodařilo žádným způsobem donutit, aby zkolaboval. A to ani při jeho samotném vývoji. Rovněž se mi podařilo odstranit zdolouhavé zpracovávání databáze, které v programu MedGraf mohly trvat i několik minut. Setřídění celé databáze MEDÚZY (v současnosti cca 60 tisíc záznamů) a její zpracování trvá v XMedGrafu 15 vteřin (Pll 800 MHz).

Autor se těší na veškeré vaše podněty, přání či požadavky na XMedGraf.
Variability of the Red Giant TZ Cygni

Proměnnost červeného obra TZ Cygni

According to the author's visual observations, TZ Cygni is a double-mode semi-regular variable of SRb type with the periods of 139.3 and 87.0 days. Podle autorových vizuálních pozorování patří proměnná hvězda TZ Cygni mezi dvouperiodické pulzující hvězdy typu SRb. Periody změny jsou 139.3 a 87.0 dne.

According to the GCVS (Kholopov et al. 1985), the red giant TZ Cygni (BD+49°2968a) is an irregular Lb-type variable of M6 spectral type. I have been observing this star visually with the 15-cm Newton telescope since 1989. The comparison stars for TZ Cyg were taken from AAVSO charts. The visual light curve covering the last 12 years and containing 357 individual estimates is shown in Fig. 1. Within the observed interval, the average brightness of TZ Cyg was about 10.8 mag and the variations in the range between 10.2 and 11.4 mag were observed.

Obr. 2/ Figure 2 - Periodogram TZ Cyg prokazující přítomnost dvou period: 139.3 a 87.0 dne. * Two periods can be seen in the Fourier periodogram of TZ Cyg: 139.3 and 87.0 days.

I have analyzed the observations by means of the Fourier periodogram, shown in Fig. 2. Two distinct peaks appear in the periodogram. Their frequencies correspond to a 139.3-day period (higher peak) and a 87.0-day one (smaller peak). In addition, a 1-yr period is detectable; it is most likely the result of a position angle error. The double-mode behaviour of TZ Cyg was already announced by Kiss et al. (1999). The authors give the results of their analysis of the AAVSO data covering 26 years and find two periods, 138 and 79 days. The longer period is practically the same as in my analysis. The
shorter one is not the same, but the difference can be due to the different lengths and coverage of the analyzed data.

The double-mode semiregular variables show an overall correlation between the period ratio and the length of the longer period, which was pointed out e.g. by Szatm'ary et al. (1996). The data for ten semiregular variables studied by Szatm'ary et al. (1996) are shown in Fig. 3. Two labeled dots shown in this figure were taken from the analysis of the observations of RX Boo (Spell 2000) and the present analysis. It is clearly seen that they fit the relation very well. TZ Cyg has one of the shortest periods among the sample of known double-mode semiregular variables. According to the latest findings, TZ Cyg should be reclassified; it is an SRb-type variable.

Acknowledgments: The author would like to thank Dr. A. Pigulski from Wroclaw University Observatory for his help in the preparation of this paper.

References/ Literatura:
Co má společného Einstein a BL Tau?

About the Relation Between Einstein and BL Tau

Petr Sobotka

BL Tau, a pulsating variable star in the MEDUZA observing programme, was used during the total solar eclipse in 1947 in Brazil. Not light variations, but the changes of its coordinates caused by the gravitational force of the Sun were measured. It should help proving Einstein theory.

...a dá se být název článku neuvěřitelný? Nedivím se. Jakou spojitost by mohl mít největší fyzik 20. století Albert Einstein s proměnnou hvězdou programu MEDUZA? Že by tento génius pozoroval proměnné hvězdy? Vyloučit to samozřejmě nemůžeme, ale nikdy se o tom nezmínil a také nikam neposílal žádný odhad či měření. Ostatně byl to přeci jen spíše teoretik. Vymyslel snad teorii, proč se BL Tau mění? Nevíme o tom, že by to zkoušel. Ostatně co se týká vesmíru, jeho hlavní parketu byla spíše gravitace a kosmologie.

Právě s gravitací to souvisí, jako s ní ostatně souvisí všechno, co má nějakou hmotnost...

Měření samo bylo na tehdejší dobu velmi složité a dlouho trvalo, než se vědci dostali s chybami měření na takovou úroveň, že byli schopni gravitační ohyb světla vůbec změřit. Polohy se navíc musely redukovat o aberaci a re-
frakcí. Právě vhodným výběrem srovnávacích hvězd se podařilo výpravě roku 1947 podstatně eliminovat vliv refrakce a mohli tak dosáhnout přesnějších výsledků než například Rus A. Michailov roku 1936, který jinak použil přístroje založeného na stejném principu. Ona měření roku 1947 prováděl G. van Biesbroeck. Samozřejmě nebylo možno polohy hvězd měřit rovnou při zaměření, a tak se pro uchování obrazu hvězd s východou použilo fotografických desek (40 x 40 cm) citlivých v oblasti 600 až 670 nm, tedy v červené oblasti spektra, aby se eliminoval silný rozptyl světla zemskou atmosférou v modré oblasti. Velká pečlivost byla věnována výrobě objektivu o průměru 15 cm, při které asistoval i National Bureau of Standards (Národní úřad pro standardy). Pro pointaci na η Tau (při zaměření 5° od Slunce) sloužil 10 cm hledáček.

Nejvhodnější místo pro měření bylo vybráno na základě průzkumu na podzim 1946 asi 10 km jižně od města Bocaiuva, ležícího mezi městy Rio de Janeiro a Salvador 500 km od pobřeží Atlantického oceánu. Pro výpočty bylo nutné znát přesně souřadnice pozorovacího stanoviště: φ = 2° 54' 45,206° ± 0,014°, λ = 17° 12' 48,87"; nacházelo se tedy asi 1,5 km od centrální linie zaměření. To bylo důležité, protože u centrální linie trvá úplné zaměření nejdelší dobu.

Počasí v den zaměření se vyvedlo a měření bylo i přes drobné technické problémy provedeno. Výprava zůstala na místě až do 17. a 18. srpna, kdy se provádělo druhé fotografování stejného pole hvězd jako při zaměření.

Zpracování naměřeného materiálu po návratu domů spočívalo především v přesném měření souřadnic hvězd na fotografických deskách. Vše bylo provedeno nezávisle dvakrát, aby se vyloučily náhodné chyby. Výsledné polohy hvězd byly změřeny s přesností 0,19" pro květnová pozorování a 0,16" pro srpnová měření. Poněkud větší chyba měření při zaměření je způsobená sluneční koronou, která před kotoučky hvězd předestřela jakousi „mlhou“.

Ve hvězdném poli exponovaném na desky byly měřeny polohy celkem 51 hvězd s hvězdnými velikostmi v rozmezí 7,1 až 10,2 mag. Bohužel zde měla výprava skutečně velkou smůlu. I přes tak velký počet hvězd se žádná nenacházelá méně jak 2,3 násobek poloměru slunečního disku od jeho středu. A to bylo Slunce zrovna v Býkově, v souhvězdí, které je jinak na hvězdy velmi bohaté. Takže hvězdy, kde by byl gravitační ohyb největší, na snímcích nebyly, respektive během zaměření se takové hvězdy kolem Slunce na obloze nenacházely. Změny poloh hvězd byly převedeny do polárních souřadnic se středem v centru slunečního disku. Výsledné veličiny byly vyneseny do grafů a metodou nejméně čtverců byly proloženy přímkou. Hledaná hodnota E (Einsteinův koefi-
cient relativního ohybu na okraji slunečního disku) byla určena na 2,01" ± 0,27". Výšla tedy větší než hodnota předpovězená Einsteinem (1,745").

To by známělo, že Einsteinova teorie nemusí být přesná. Van Biesbroeck by se tak navždy zapsal do historie fyziky jako astronaut, který pozorováním zasadil teorii relativity velkou ránu! K tak dalekosáhlému závěru ovšem ani sám autor nedospěl. Byl si příliš dobře vědom, jak nejistá jsou jeho pozorování a jeho práce publikovaná v Astronomical Journalu končí slovy: „Přestože je naměřená hodnota větší než teoretická, získaný rozdíl je příliš nejistý na to, aby se na něj mohlo pohlížet jako na fakt. Doporučuji opakovat měření za lepších technických podmínek. To se později stalo a Einsteinova teorie byla beze zbytku potvrzena. Ale to je jiný příběh...

My se teď vrátíme k BL Tau. Jak už možná tušíte, má tato proměnná hvězda příči jen s tímto příběhem něco společného. Co to je? Jsou to souřadnice! V okamžiku zatmění Slunce se nacházela BL Tau asi 1,5° od středu slunečního disku. Blíže byly jen dvě jiné hvězdy. BL Tau se tak stala jedním z hlavních opěrných bodů při výpočtu Einsteinova koeficientu. Kdyby měření bylo přesnější a dopadlo jinak, mohla by být BL Tau nejslavnější proměnnou hvězdou teoretické fyziky. No nebylo by to hezké? Ale nechtějme toho po ní zase moc. Myslím, že nám stačí, když se na ní budeme v noci dívat s vědomím, že před více než půl stoletím posloužila úplně jinému oboru astronomie.

Obr.1/ Figure 1 - Obrázek na obloze zábírá oblast asi 4,5° x 4,5°. Kotouček uprostřed znázorňuje sluneční disk a uzavřená křivka kolem něj pak rozměr sluneční korony při úplném zatmění Slunce 20. května 1947 v Brazílii. * The field covering 4,5 x 4,5 degrees of the sky. A circle in the center represents the solar disc and the contour around it marks the solar corona during the total solar eclipse on 20th May 1947 in Brasil.

Literatura/ References:
van Biesbroeck, G., 1950, AJ, 55, 49
Mezinárodní konference o výzkumu proměnných hvězd hvězd Brno 2001
Petr Hejduk

International Conference on Variable Star Research Brno 2001

The article describes the highlights of a busy agenda of the conference.

Konference se konala ve dnech 8. - 11. 11. 2001 již tradičně na Hvězdárně a planetáriu Mikuláše Koperníka v Brně. Její vědecký i společenský program byl tak bohatý, že ho zde není možné popisovat celý.

Kromě domácích astronomů se zúčastnili hosté z Argentiny, Itálie, Maďarska, Německa, Polska, Řecka, Slovenska, Turecka a Ukrajiny, na posterech se podíleli spoluautoři z Jugoslávie, Koreje, Rakouska, Rumunska a Velké Británie.

Z přednášejících zaujali zejména profesor Demircan (Turecko) svojí přednášku na téma: Změny orbitálních period zákrytových dvojíhvězd typu Algol, v níž podal přehled o druzích soustav typu Algol z hlediska vyvinutosti systému a o vlivu přenosu hmoty mezi složkami a ztráty hmoty ze soustavy na změny oběžné peridy.

Další velice zajímavá byla přednáška na téma: Efekty druhého řádu u světelných křivek zákrytových dvojíhvězd, kterou přednesl T. Hedegus (Maďarsko). Zabýval se efekty odrazu, okrajového ztěmnění a tvaru složek a jejich vlivy na světelné křivky.

Výbornou a rozsáhlou přehledovou přednášku o symbiotických hvězdách pronesla profesorka Mikolajewská (Polsko). Týkala se všech známých možností proměnnosti tohoto druhu hvězd, jejich projevů a uváděla některé konkrétní příklady.

Vynikající svojí podrobností a zasvěceností byla přednáška dr. Šimona (ČR) o kataklyzmických proměnných hvězdách.

Mnoha účastníky byla očekávána přednáška dr. Kisse (Maďarsko) o roli amatérských vizuálních pozorování ve výzkumu proměnných hvězd. Na poli fyzických (dlouhoperiodických) proměnných hvězd vyznívá jeho závěr pro amatérská vizuální pozorování velice příznivě. Horší je, podle jeho mínění, situace u většiny zákrytových dvojíhvězd, kde jsou vyjímkou například hvězdy programu Prospektor nebo hvězdy s dlouhou periodou (jako např. OW Gem).

Z posterů je třeba zmínit výborné postery dr. Šimona na totéž téma jako přednáška a poster o katalogu zákrytových dvojjhvězd i s jeho šestidílnou ukázkou. Tento atlas obsahuje O-C diagramy pro 1140 zákrytových dvojjhvězd! (autoři z Polska a Koreje).

Kromě přednášek se po dvě noči dal pozorovat, čehož využila velká skupina pozorovatelů k vizuálním pozorováním proměnek, CCD pozorováním a seznámením s nimi, i jen k pozorováním pro radost (např. Enckeho dělení prstenců Saturnu atd.).

Konferenci lze hodnotit jako výbornou akci s rostoucím ohlasem v proměnářském světě a vystihnut ji jde také slovy: Kdo nepřijel, prohloupil.

2. setkání uživatelů CCD techniky

2nd Workshop of Users of CCD

Program byl zahájen přispěvkem F. Hrocha o zkušenostech s fotometrií pomocí programu Munipack. M. Wolf přednášel o fotometrických katalogách a o problému absolutní fotometrii hovořila L. Šarounová. V odpoledním bloku předvedl L. Král novou verzi Munipacku pro DOS. M. Brož představil grafickou nadstavbu Munipacku Variables/Photometry určenou pro operační systém LINUX a informoval o projektu automatizovaného dalekohledu v Hradci Králové.

Ve večerních hodinách se testovala nová verze Munipacku pro DOS.

Tato setkání jsou velice dobrým způsobem, jak si vyměňovat cenné zkušenosti. Pozorovatelé se proto již nyní těší na další setkání.
Zápis z jednání plenární schůze
B.R.N.O.

Místo konání: Brno
Termin: 15. 12. 2001

10:15 P. Hájek oznámil změnu programu - přeložení přednášky Z. Mikuláška na 12:30, tato změna byla většinou hlasů schválena. Dále byl představen seznam kandidátů na členy výboru a jeho předsedu, hospodáře a revizora. Následovalo hlasování o personálním složení útvarů potřebných pro zajištění voleb. Hlasovací většinou byla schválena následující sestava:

volební komise - R. Čihal, O. Pejcha, A. Stuhl,
mandátová komise - Z. Mikulášek, J. Zahajský,
zapisovatelé - P. Luťcha, Š. Paschke,
ověřovatel zápisu - E. Šafářová,
skartátor - J. Šafář.

10:22 M. Zejda přednesl zprávu o činnosti za poslední funkční období 2001: CCD a vizuální pozorování, aktivity pozorovatelů od roku 1960, různé přehledové statistiky, informace o databázi pozorování (zatím data na vyžádání), katalogy BRKA, kartotéku pozorovatelů a členů sekce. L. Brát informoval o skupině MEDÚZA a statistikách CCD a vizuálních pozorování. P. Sobotka podal údaje o katalogu MEKA, zveřejňování kampaní, stávajícím software a o informacích na internetové stránce.

11:57 Š. Paschke uvedl, že revizní zpráva za rok 2001 bude přiložena do účetnictví.

Následující hlasování většinou přijalo informace o zprávách.

12:00 M. Zejda předal cenu (diplom) J. Šilháně za proměněné roku 2001 O. Pejchovi s tím, že další část ocenění mu bude poskytnuta formou dopravy a volného vstupu na stelární seminář Bezovec 2002.

12:05 P. Hájek zahájil volby představením kandidátů:

Revizor - Š. Paschke, A. Slatinský.
Hospodář - E. Šafářová.
Předseda sekce - P. Sobotka, M. Zejda.
12:20 Začalo tajné hlasování o kandidátech a byla vyhlášena přestávka do 12:45.

12:45 P. Sobotka podal informace o
stavu proměnářského CD, následovala krátká diskuse o obsahu a použitých formátech.
14:00 Vyhlášení výsledků voleb:
počet členů výboru stanoven na 10, re-
vizorem byl zvolen Š. Paschke, za členy
výboru L. Brát, M. Brož, P. Dubovský, P.
Hájek, A. Paschke, P. Sobotka, E.
Šafářová, J. Šafář a M. Wolf. Předsedou se
stal M. Zejda a hospodářem E. Šafářová.
14:10 P. Hájek podal zprávu o kampani
na sledování OW Gem.
Zapsal: P. Lučha, Š. Paschke
Ověřila: E. Šafářová

Proměnářské otazníky

Šestý test rubriky proměnářských otazníků se týká vývoje Galaxie. Máte
přiležitost prověřit si své znalosti o „hvězděm ostrově“, ve kterém žijeme.
Správné odpovědi zaznamenejte v příštím čísle Persea. Méně trpěliví se opět mo-
hou v předstihu obrátit na překladatele testu, tentokrát na Petra Hejduka,
který se této rubriky od čísla 6/2001 ujal (xhejdukp@seznam.cz).
Správné odpovědi otázek testu z Persea 3/2001 z oboru „Slunce“ jsou
takovéto: 1C, 2C, 3D, 4C, 5B, 6B, 7D, 8A, 9C, 10D, 11A, 12A, 13C, 14C, 15B,
31A, 32C, 34C, 35C.

Vývoj Galaxie

1) Co astronomové NEPOUŽÍVÁJÍ pro
vytváření spirální struktury Galaxie?
A. hvězdy tříd O a B
B. obří molekulová mračna
C. H II oblasti
D. hvězdy tříd K a M
2. Celková hmotnost Galaxie, určená z
její rotační křivky (v hmotnostech
Slunce), je asi:
A. jeden milion
B. sto miliard
C. deset miliard
D. jeden bilion
3) Jaká je přibližná vzdálenost Slunce
od středu Galaxie (ve světelných
mětech)?
A. 300
B. 3 000
C. 30 000
D. 300 000
4) Má-li radioastronom zjistit spirální
strukturu Galaxie, potřebuje:
A. znát galaktickou rotační křivku a změřit
Dopplerův posuv čar 21 cm
B. odvodit rychlosti (prachoplynových)
mračen podél zoměného paprsku
C. znát velikost H II oblasti, které pozoruje
D. být schopen ztotožnit H I oblasti s jasnými asociacemi mladých modrých
hvězd
5) Co z následujícího býste
NEOČEKÁVALI, že najdete ve spirálních
ramenech Galaxie?
6) Spirální ramena Galaxie podle modelu hustotnich vln spirální struktury:
A. jsou pevná tělesa, držená pohromadě gravitací
B. mají silné magnetické pole, které je drží pohromadě
C. jsou objekty s krátkou životností vytvořené hustotními vlnami
D. jsou vytvořena různovými vlnami z galaktického jádra

7) Na základě vývoje galaktického disku očekáváme, že:
A. mezihvězdný materiál bude obsahovat méně těžkých částic
B. vznikání hvězd bude pokračovat
C. spirální ramena pomalu zmizí
D. počet hvězdných „pozůstatků“ se bude snižovat

8) V budoucnosti v galaktickém halu očekáváme:
A. tvorbu většího množství supermasivních hvězd
B. oběh kulových hvězdokup a odtok horkého plynu z disku
C. že hlavním typem vznikajících hvězd budou hnedí čepelové
D. že horký plyn bude vlévat do jádra

9) Hodně hvězd populace I je obsazeno v:
A. galaktickém jádru
B. středové výduti
C. spirálních ramenech
D. galaktickém halu

10) V Galaxii se nejvíce prachu a plynu nachází vše:
A. jádru
B. středové výduti

11) V Galaxii se nejvíce starých hvězd populace II nachází vše:
A. jádru
B. středové výduti
C. spirálních ramenech
D. halu

12) Radiová pozorování (s vysokým rozlišením) jádra galaxie NEUKAZUJÍ, že:
A. původ části záření je synchrotron
B. část záření emituje horký ionizovaný plyn
C. plyn tvoří smyčky a pásy
D. jádro obsahuje jen kulové hvězdokupy.

13) Hvězdy galaktické populace vzniklé nedávno:
A. obsahují více vodíku než starší hvězdy
B. mají vyšší obsah kovů
C. neobsahují žádné kovy
D. s menší pravděpodobností vybuchnou jako supernovy

14) Jak známe pozici Slunce v Galaxii a jeho oběžnou rychlost?
A. z odrazu radiových vln od středu Galaxie
B. z jeho Dopplerova posunu
C. z porovnání s „pevnou základnou“ kulových hvězdokup v galaktickém halu
D. z vlastních pohybů blízkých otevřených hvězdokup

15) Jaký je důvod, že můžeme hvězdy typu RR Lyrae používat k určování vzdáleností od středu Galaxie?
A. díky jejich závislosti peridy a svítivosti
B. všechny jsou ve stejné vzdálenosti
C. všechny leží v zómém poli spolu s galaktickým středem
D. jako třída mají podobné svítivosti

16) Hvězdy v naší Galaxii neobíhají podle Keplerových zákonů. Důvodem je:
A. poměrně velké množství hmoty je rozloženo mimo střed Galaxie
B. úhlový moment hybnosti se při rotaci Galaxie nezachovává
C. Keplerovy zákony nahrazuje teorie relativity
D. dráhy jsou ve velké míře kruhové a ne elliptické

17) Velikost našeho galaktického hala je:
A. menší než Oortův oblak komet
B. mimo větší než galaktický disk
C. menší než galaktické jádro
D. velké asi šest miliard kiloparseků v průměru

18) Je-li v naší Galaxii trnavá hmota, která příspívá k tomu, že hvězdy neobíhají podle Keplerových zákonů, měla by být:
A. v galaktickém centru
B. mimo naší galaxii
C. v galaktickém halu
D. v vzdáleně galaxii

19) Jak mapujeme strukturu a velikost galaktických ramen?
A. pomocí Nortonova hvězdného atlasu
B. použitím pozorování cefeid
C. pozorováním kulových hvězdokup
D. pomocí kosmických sond v galaktickém středu

20) Který model nejlépe popisuje utváření galaktických ramen?
A. model hustotných vln
B. tepelný synchrotronní model
C. model přesahu
D. teorie velkého dopadu

21) Co NENÍ charakteristikou středu naší Galaxie?
A. září v rentgenovém oboru
B. emituje vysokoenergetické částice
C. pozorován ze Země je velmi jasný v optickém oboru
D. pravděpodobně se v něm nachází velmi hmotná černá díra

22) Proč se kulové hvězdokupy nacházejí v galaktickém halo?
A. vznikly brzo a neztratily svůj moment hybnosti
B. vznikly pozdě z temné hmoty
C. byly zachyceny až poté, co se galaxie vyvinula
D. byly vypuštěny ze spirálních ramen

23) Polohu Slunce v naší Galaxii můžeme potvrdit:
A. srovnáním s třírozměrným systémem kulových hvězdokup za znalost jejich vzdáleností, určených podle svitivosti hvězd typu RR Lyrae
B. použitím Keplerova zákona perioda-svítivost
C. aplikací Newtonova zákona na jeho po-hyb kolem středu Galaxie
D. pozorováním rozdělení jasných H II oblastí v našem okolí

24) Vzdálenost ke spirálním ramenům naší Galaxie můžeme určit:
A. spočítáním astronomických jednotek pomocí dalekohledu
B. metodou trigonometrické paralaxy
C. užitím závislosti hmotnost-svítivost pro galaxie
D. určením svítivosti cefeid

25.- 28. Vyberte hodnoty platné pro Mléčnou dráhu:

25) Přibližná hmotnost Galaxie mezi námi a středem (v hmotnostech Slunce):
A. 25 000
B. 100 000
C. 250 milionů
D. 100 miliard
26) Vzdálenost od galaktického jádra k nám (ve světelných letech):
A. 25 000
B. 100 000
C. 250 milionů
D. 100 miliar

27) Přibližný čas oběhu Slunce kolem středu Galaxie (v letech):
A. 25 000
B. 100 000
C. 250 milionů
D. 100 miliar

28) Přibližný průměr galaktického disku (ve světelných letech):
A. 25 000
B. 100 000
C. 250 milionů
D. 100 miliar

29) Střed Galaxie leží ve směru souhvězdí:
A. Labuť
B. Orion
C. Střelec
D. Perseus

30) Náš oběh kolem středu Galaxie nás unáší směrem k souhvězdí:
A. Labuť
B. Orion
C. Střelec
D. Perseus

31) Většinu Mléčné dráhy nejsme schopni pozorovat vizuálně kvůli:
A. prachu v hlavní galaktické rovině
B. černým děrám v halu
C. gravitačním čočkování jádra
D. hnědým trpaslíkům v Místní skupině

Došlá pozorování

MEDÚZA

Nováčky v žebříčku vizuálních pozorovatelů jsou Milan Major a Petr Horálek.

Děkujeme všem aktivním pozorovatelům a rovněž Martinu Nedvědovi za pomoc při přepisování dat z papíru do elektronické formy.

Žebříček vizuálních pozorovatelů:

<table>
<thead>
<tr>
<th></th>
<th>Pavol A. Dubovský (DPV)</th>
<th>Podbiel (SR)</th>
<th>1026</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Peter Fidler (FI)</td>
<td>Lefantovice (SR)</td>
<td>922</td>
</tr>
<tr>
<td>3</td>
<td>Luboš Bráť (L)</td>
<td>Pec pod Sněžkou</td>
<td>581</td>
</tr>
</tbody>
</table>
4 Jerzy Speil (SP) Walbrzych (PL) 516
5 Jan Zahajský (JZ) Praha 310
6 Janis Tzoumas (JT) Olomouc 252
7 Martin Lehký (LEH) Hradec Králové 169
8 Ondřej Pejcha (OP) Brno 112
9 Milan Major (MA) Praha 80
10 Jan Skalický (JS) Lanškroun 57
11 Josef Masničák (JM) Olomouc 54
12 Petr Horálek (HOR) Pardubice 42
13 Tomáš Kubec (KBC) Hradec Králové 38
14 Petr Hejduk (HU) Praha 26
15 Roman Kněžík (RK) Háviřov 26
16 Tomáš Zajíc (TZ) Vsetín 13
17 Martin Vilášek (VI) Ostrava 11
18 Jakub Gožďal (JG) Dubňany 9
19 Martin Nedvěd (NE) Praha 7
20 Petra Fědorová (PF) Brno 2
21 Marek Falc (MF) Strakonice 1

Žebříček CCD pozorovatelů:

| 1 | Ladislav Šmelcer (SM) Valašské Meziříčí 1004
2 | Petr Sobotka (P) Kolin 188
3 | Luboš Brát (L) Pec pod Sněžkou .69

Luboš Brát

Zákrytové dvojhvězdy

Hulej P., os. číslo 1110
BN Peg 14 7 2001 14565
Koss, Luťcha, číslo 3005
V 931 Cyg 12 8 2001 14477
QU Cyg 11 8 2001 14478
Král L., os. číslo 953
BN Peg 14 7 2001 14561
RS Sco 15 7 2001 14574
Kubica J., os. číslo 1046
RS Sco 15 7 2001 14570
Luťcha P., os. číslo 425
RS Sco 15 7 2001 14568
Němčová V., os. číslo 979
BN Peg 14 7 2001 14566
RS Sco 15 7 2001 14575
Procházková B., os. číslo 1075
CX Aqr 17 11 2001 14469
RV Tri 7 11 2001 14474
AE Cas 16 11 2001 14476
Sobota P., os. číslo 671
RS Sco 15 7 2001 14577
Šafář J., os. číslo 707
V2239 Cyg 14 10 2001 14479
V2240 Cyg 14 10 2001 14480
KP Cep 14 10 2001 14481
FF Vul 14 10 2001 14482
V 345 Cas 14 10 2001 14483
PY Lyr 14 10 2001 14484
KT Cas 14 10 2001 14485
MT Cas 5 11 2001 14486
KV Cas 5 11 2001 14487
KT Cas 5 11 2001 14488
BW Cas 5 11 2001 14489
TX CMi 17 11 2001 14490
QT Ori 17 11 2001 14491
NV Cas 17 11 2001 14492
AH Cas 26 8 2001 14493
FF Vul 26 8 2001 14494
V 359 Cas 25 8 2001 14495
V 525 Cyg 24 8 2001 14496
FM Vul 24 8 2001 14497
V 400 Lyr 24 8 2001 14498
V 400 Lyr 25 8 2001 14499
AH Lyr 24 8 2001 14500
V1004 Cyg 18 8 2001 14501
IW Lyr 18 8 2001 14502
PY Lyr 18 8 2001 14503
FF Vul 18 8 2001 14504
V 919 Aql 18 8 2001 14505
HN Cas 14 8 2001 14506
FF Vul 14 8 2001 14507
V 919 Aql 14 8 2001 14508
CG Lac 16 8 2001 14509
V 706 Cyg 15 8 2001 14510
FL Sge 15 8 2001 14511
V 534 Cyg 15 8 2001 14512
V 961 Cyg 15 8 2001 14513
XY Dra 14 8 2001 14514
V 511 Oph 14 8 2001 14515
CU Peg 14 8 2001 14516
V 732 Her 31 5 2001 14517
31231618 Lyr20 5 2001 14518
31231618 Lyr21 5 2001 14519
PY Lyr 20 5 2001 14520
V 635 Cyg 20 5 2001 14521
AR Boo 23 5 2001 14522
AR Boo 23 5 2001 14523
Šulc M., os. číslo 1044
BN Peg 14 7 2001 14562
RS Sco 15 7 2001 14573
Tzoumas J., os. číslo 1112
RS Sco 15 7 2001 14576
Zejda M., os. číslo 891
V 789 Her 12 8 2001 14454
V 789 Her 12 8 2001 14455
V 789 Her 6 7 2001 14456
KO Lac sup 2000 14457
V 431 Lyr sup 2000 14458
23360281 Tri12 8 2001 14459
ST Tri 12 8 2001 14460
RV Tri 11 8 2001 14461
X Tri 12 8 2001 14462
V 711 Cyg 11 8 2001 14463
BH Del 11 8 2001 14464
V 770 Aql 12 8 2001 14465
BU Ser 11 8 2001 14466
V 412 Her sup 2001 14524
V 869 Cyg sup 2001 14525
V 415 Aql 3 4 2001 14526
V 415 Aql 23 8 2001 14527
V 2240 Cyg 23 8 2001 14528
V 2239 Cyg 23 8 2001 14529
V 361 Lyr 23 8 2001 14530
V 789 Her 23 8 2001 14531
V 784 Aql 19 8 2001 14532
V 784 Aql 19 8 2001 14533
V 784 Aql 19 8 2001 14534
V 770 Aql 20 8 2001 14535
V 770 Aql 19 8 2001 14536
V 770 Aql 20 8 2001 14537
El Sge 19 8 2001 14538
MZ Lyr 19 8 2001 14539
35470216 Cyg18 8 2001 14540
V 429 Lyr sup 2001 14541
V 761 Aql 17 8 2001 14542
V 1019 Cyg sup 2000 14543
V 429 Lyr sup 2001 14544
TU Crt B 17 8 2001 14545
TU Crt B 17 8 2001 14546
23360281 Tri17 8 2001 14547
23360281 Tr17 8 2001 14548
ST Tri 17 8 2001 14549
V 429 Lyr 16 8 2001 14550
V 412 Lyr 16 8 2001 14551
V 168 Aql 17 8 2001 14552
V 919 Aql 16 8 2001 14553
V 1341 Aql 25 8 2001 14554
TW Crt B 25 8 2001 14555
AH Tau 24 8 2001 14556
GZ And 24 8 2001 14557
IR Cas 24 8 2001 14558
BX Peg 24 8 2001 14559

Sestavil M. Zejda
Obr. 1/ Figure 1 - Vizuální světelná křivka TZ Cyg pokrývající období let 1989 - 2001 je pořízena autorem. * Visual light curve of TZ Cyg, covering the years 1989 - 2001, based on the author's visual observations.

PERSEUS, věstník pro pozorovatele proměnných hvězd. Ročník 11.

Vydává B.R.N.O. - sekce pozorovatelů proměnných hvězd České astronomické společnosti a Hvězdárna a planetárium Mikuláše Koperníka v Brně.

Adresa redakce: Redakce Persea, Hvězdárna a planetárium Mikuláše Koperníka, Kravi hora 2, 616 00 Brno. Tel. a fax: 05/41321287, e-mail: sobotka@meduza.info

Bankovní spojení: 173 157 604/0300

Šéfredaktor: Bc. Petr Sobotka
Redakční rada: Bc. Luboš Brát, RNDr. Petr Hájek, Ing. Jan Šafář, RNDr. Miloslav Zajdla

Recenzent: Mgr. Vojtěch Šimon, Ph.D.

Sazba: Ing. Jan Šafář, tisk: MKS Vyškov